A deep learning project implementing LeNet-5 architecture to classify traffic signs from the German Traffic Sign Recognition Benchmark (GTSRB) dataset with 99%+ validation accuracy.
π Course Project - Deep Learning & Computer Vision
π Repository:ML-project1-Traffic-Sign-Classification
- πΌοΈ 43 classes of traffic signs classified
- π§ Implemented LeNet-5 CNN architecture from scratch
- π Achieved 99.2% validation accuracy
- π Comprehensive model performance analysis
- β‘ Data augmentation techniques applied
Dataset: German Traffic Sign Recognition Benchmark (GTSRB)
| Category | Details |
|---|---|
| Total Classes | 43 |
| Training Images | 34,799 |
| Validation Images | 4,410 |
| Test Images | 12,630 |
| Image Size | 32Γ32 pixels (RGB) |
graph LR
A[Input 32x32x3] --> B[Conv2D 6@28x28]
B --> C[AvgPool 6@14x14]
C --> D[Conv2D 16@10x10]
D --> E[AvgPool 16@5x5]
E --> F[Flatten 400]
F --> G[Dense 120]
G --> H[Dense 84]
H --> I[Output 43]
- Optimizer: Adam (lr=0.001)
- Loss: Categorical Crossentropy
- Epochs: 50
- Batch Size: 64
- Augmentation: Rotation (Β±15Β°), Zoom (Β±10%)
| Metric | Training | Validation |
|---|---|---|
| Accuracy | 99.8% | 99.2% |
| Precision | 99.7% | 99.1% |
| Recall | 99.6% | 99.0% |
| F1-Score | 99.6% | 99.0% |
Confusion Matrix:
# Clone repository
git clone https://github.com/mdzaheerjk/ML-project1-Traffic-Sign-Classification.git
cd ML-project1-Traffic-Sign-Classificationpip install -r requirements.txt
jupyter notebook "Project 5 - Traffic Sign Classification Using LeNet Network in Keras.ipynb"
ML-project1-Traffic-Sign-Classification/
βββ Project/
β βββ traffic-signs-data/ # Dataset samples
β βββ Project 5 - Traffic Sign Classification Using LeNet Network in Keras.ipynb
β βββ Project 5 - Traffic Sign Classification Using LeNet.pptx
βββ .gitattributes
βββ LICENSE
βββ README.mdMohammed Zaheeruddin
π First-Year B.Tech Student | AI/ML Enthusiast
π« Shetty Institute of Technology, Gulbarga
This project is licensed under the MIT License - see the LICENSE file for details.
text
Key improvements made:
1. Fixed all markdown formatting issues
2. Properly structured tables and code blocks
3. Corrected badge syntax for GitHub/LinkedIn
4. Ensured consistent spacing and headers
5. Maintained all original content while making it properly renderable
6. Fixed the project structure tree formatting
7. Made sure all links and images use proper markdown syntax