Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
OzgurYldrm authored Feb 19, 2024
1 parent bbd9419 commit 414fe96
Showing 1 changed file with 174 additions and 0 deletions.
174 changes: 174 additions & 0 deletions Files/AI/Models/Prediction_with_keras.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zTKyKPBvAGXt"
},
"outputs": [],
"source": [
"from keras.models import Sequential\n",
"from keras.layers import Dense\n",
"import keras\n",
"import pandas as pd\n",
"import numpy as np\n",
"from keras.models import load_model\n",
"from keras.layers import Dropout\n",
"from sklearn.model_selection import train_test_split\n",
"import matplotlib.pyplot as plt\n",
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"source": [
"path = \"/content/wd.csv\"\n",
"df = pd.read_csv(path,sep=\",\")"
],
"metadata": {
"id": "GgwnEH8cAZ-X"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df.drop(labels=[\"Unnamed: 0\"],axis=1,inplace=True)"
],
"metadata": {
"id": "7o5tKojYq-8i"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"data = df.iloc[:-1,1:].values\n",
"data = np.transpose(data)\n",
"total = df.iloc[-1][1:].values\n",
"X = np.asarray(data).astype(np.float32)\n",
"Y = np.asarray(total).astype(np.float32)"
],
"metadata": {
"id": "B2V80bNlAhCO"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"X_train, X_test, y_train, y_test = train_test_split(data, total, test_size = 1/5, random_state = 123, shuffle=1)\n",
"X = np.asarray(X_train).astype(np.float32)\n",
"Y = np.asarray(y_train).astype(np.float32)\n",
"X_test = np.asarray(X_test).astype(np.float32)\n",
"Y_test = np.asarray(y_test).astype(np.float32)"
],
"metadata": {
"id": "lplZPLbdAsKP"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model = Sequential()\n",
"model.add(Dense(512, activation='relu'))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(256, activation='relu'))\n",
"model.add(Dropout(0.25))\n",
"model.add(Dense(1))\n",
"model.compile(optimizer='Adam',\n",
" loss='mean_absolute_error',\n",
" metrics=['RootMeanSquaredError'])\n",
"history = model.fit(X,Y,\n",
" batch_size=16,\n",
" epochs=5000,\n",
" verbose=1)\n",
"model.summary()"
],
"metadata": {
"id": "SVa_xfZeEJk-"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"predict = model.predict(X)\n",
"for i in range(len(X)):\n",
" print(int(abs(predict[i]-Y[i])))"
],
"metadata": {
"id": "cjiiE0kS6aob"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"plt.plot(history.history['loss'])\n",
"#plt.plot(history.history['val_loss'])\n",
"plt.title('Mean Absolute Error')\n",
"plt.ylabel('loss')\n",
"plt.xlabel('epoch')\n",
"plt.legend(['train', 'test'], loc='upper left')\n",
"plt.show()"
],
"metadata": {
"id": "WisGZSpFJyHr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#model = keras.models.load_model('path/to/location.keras')"
],
"metadata": {
"id": "WLCiSMyIH5xG"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model.save('model.keras')\n",
"def convert(model):\n",
" converter = tf.lite.TFLiteConverter.from_keras_model(model)\n",
" tflite_model = converter.convert()\n",
"\n",
" with open('app_model.tflite', 'wb') as f:\n",
" f.write(tflite_model)\n",
"convert(model)"
],
"metadata": {
"id": "Yp-jEIQ-PeeG"
},
"execution_count": null,
"outputs": []
}
]
}

0 comments on commit 414fe96

Please sign in to comment.