-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit a7c597e
Showing
299 changed files
with
24,623 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2019 Ankesh Anand | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
# State Representation Learning Using an Unbalanced Atlas | ||
|
||
The project is based on the code from the benchmark and techniques introduced in the paper [Unsupervised State Representation Learning in Atari](https://arxiv.org/abs/1906.08226). Please visit https://github.com/mila-iqia/atari-representation-learning for detailed instructions on the benchmark. | ||
|
||
To run the script: | ||
|
||
```bash | ||
python run_probe.py | ||
``` | ||
|
||
An example of running DIM-UA and setting the environment to Video Pinball, 4 heads and 512 units each, seed 2: | ||
|
||
```bash | ||
python run_probe.py --env-name VideoPinballNoFrameskip-v4 --n-head 4 --feature-size 512 --qv --seed 2 | ||
``` | ||
|
||
An example of running ST-DIM and setting the environment to Video Pinball, 512 units, seed 2: | ||
|
||
```bash | ||
python run_probe.py --env-name VideoPinballNoFrameskip-v4 --n-head 1 --feature-size 512 --seed 2 | ||
``` | ||
|
||
Running '-UA' described in the paper, and setting the environment to Video Pinball, 4 heads and 512 units each, seed 2: | ||
|
||
```bash | ||
python run_probe.py --env-name VideoPinballNoFrameskip-v4 --n-head 4 --feature-size 512 --seed 2 | ||
``` | ||
|
||
Running '+MMD' described in the paper, and setting the environment to Video Pinball, 4 heads and 512 units each, seed 2: | ||
|
||
```bash | ||
python run_probe.py --env-name VideoPinballNoFrameskip-v4 --n-head 4 --feature-size 512 --mmd --seed 2 | ||
``` | ||
|
||
A detailed list of parameter setup is in [atariari/methods/utils.py] |
Empty file.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
from .a2c_acktr import A2C_ACKTR | ||
from .ppo import PPO |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
|
||
from a2c_ppo_acktr.algo.kfac import KFACOptimizer | ||
|
||
|
||
class A2C_ACKTR(): | ||
def __init__(self, | ||
actor_critic, | ||
value_loss_coef, | ||
entropy_coef, | ||
lr=None, | ||
eps=None, | ||
alpha=None, | ||
max_grad_norm=None, | ||
acktr=False): | ||
|
||
self.actor_critic = actor_critic | ||
self.acktr = acktr | ||
|
||
self.value_loss_coef = value_loss_coef | ||
self.entropy_coef = entropy_coef | ||
|
||
self.max_grad_norm = max_grad_norm | ||
|
||
if acktr: | ||
self.optimizer = KFACOptimizer(actor_critic) | ||
else: | ||
self.optimizer = optim.RMSprop( | ||
actor_critic.parameters(), lr, eps=eps, alpha=alpha) | ||
|
||
def update(self, rollouts): | ||
obs_shape = rollouts.obs.size()[2:] | ||
action_shape = rollouts.actions.size()[-1] | ||
num_steps, num_processes, _ = rollouts.rewards.size() | ||
|
||
values, action_log_probs, dist_entropy, _ = self.actor_critic.evaluate_actions( | ||
rollouts.obs[:-1].view(-1, *obs_shape), | ||
rollouts.recurrent_hidden_states[0].view( | ||
-1, self.actor_critic.recurrent_hidden_state_size), | ||
rollouts.masks[:-1].view(-1, 1), | ||
rollouts.actions.view(-1, action_shape)) | ||
|
||
values = values.view(num_steps, num_processes, 1) | ||
action_log_probs = action_log_probs.view(num_steps, num_processes, 1) | ||
|
||
advantages = rollouts.returns[:-1] - values | ||
value_loss = advantages.pow(2).mean() | ||
|
||
action_loss = -(advantages.detach() * action_log_probs).mean() | ||
|
||
if self.acktr and self.optimizer.steps % self.optimizer.Ts == 0: | ||
# Sampled fisher, see Martens 2014 | ||
self.actor_critic.zero_grad() | ||
pg_fisher_loss = -action_log_probs.mean() | ||
|
||
value_noise = torch.randn(values.size()) | ||
if values.is_cuda: | ||
value_noise = value_noise.cuda() | ||
|
||
sample_values = values + value_noise | ||
vf_fisher_loss = -(values - sample_values.detach()).pow(2).mean() | ||
|
||
fisher_loss = pg_fisher_loss + vf_fisher_loss | ||
self.optimizer.acc_stats = True | ||
fisher_loss.backward(retain_graph=True) | ||
self.optimizer.acc_stats = False | ||
|
||
self.optimizer.zero_grad() | ||
(value_loss * self.value_loss_coef + action_loss - | ||
dist_entropy * self.entropy_coef).backward() | ||
|
||
if self.acktr == False: | ||
nn.utils.clip_grad_norm_(self.actor_critic.parameters(), | ||
self.max_grad_norm) | ||
|
||
self.optimizer.step() | ||
|
||
return value_loss.item(), action_loss.item(), dist_entropy.item() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
import h5py | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.utils.data | ||
from torch import autograd | ||
|
||
from baselines.common.running_mean_std import RunningMeanStd | ||
|
||
|
||
class Discriminator(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, device): | ||
super(Discriminator, self).__init__() | ||
|
||
self.device = device | ||
|
||
self.trunk = nn.Sequential( | ||
nn.Linear(input_dim, hidden_dim), nn.Tanh(), | ||
nn.Linear(hidden_dim, hidden_dim), nn.Tanh(), | ||
nn.Linear(hidden_dim, 1)).to(device) | ||
|
||
self.trunk.train() | ||
|
||
self.optimizer = torch.optim.Adam(self.trunk.parameters()) | ||
|
||
self.returns = None | ||
self.ret_rms = RunningMeanStd(shape=()) | ||
|
||
def compute_grad_pen(self, | ||
expert_state, | ||
expert_action, | ||
policy_state, | ||
policy_action, | ||
lambda_=10): | ||
alpha = torch.rand(expert_state.size(0), 1) | ||
expert_data = torch.cat([expert_state, expert_action], dim=1) | ||
policy_data = torch.cat([policy_state, policy_action], dim=1) | ||
|
||
alpha = alpha.expand_as(expert_data).to(expert_data.device) | ||
|
||
mixup_data = alpha * expert_data + (1 - alpha) * policy_data | ||
mixup_data.requires_grad = True | ||
|
||
disc = self.trunk(mixup_data) | ||
ones = torch.ones(disc.size()).to(disc.device) | ||
grad = autograd.grad( | ||
outputs=disc, | ||
inputs=mixup_data, | ||
grad_outputs=ones, | ||
create_graph=True, | ||
retain_graph=True, | ||
only_inputs=True)[0] | ||
|
||
grad_pen = lambda_ * (grad.norm(2, dim=1) - 1).pow(2).mean() | ||
return grad_pen | ||
|
||
def update(self, expert_loader, rollouts, obsfilt=None): | ||
self.train() | ||
|
||
policy_data_generator = rollouts.feed_forward_generator( | ||
None, mini_batch_size=expert_loader.batch_size) | ||
|
||
loss = 0 | ||
n = 0 | ||
for expert_batch, policy_batch in zip(expert_loader, | ||
policy_data_generator): | ||
policy_state, policy_action = policy_batch[0], policy_batch[2] | ||
policy_d = self.trunk( | ||
torch.cat([policy_state, policy_action], dim=1)) | ||
|
||
expert_state, expert_action = expert_batch | ||
expert_state = obsfilt(expert_state.numpy(), update=False) | ||
expert_state = torch.FloatTensor(expert_state).to(self.device) | ||
expert_action = expert_action.to(self.device) | ||
expert_d = self.trunk( | ||
torch.cat([expert_state, expert_action], dim=1)) | ||
|
||
expert_loss = F.binary_cross_entropy_with_logits( | ||
expert_d, | ||
torch.ones(expert_d.size()).to(self.device)) | ||
policy_loss = F.binary_cross_entropy_with_logits( | ||
policy_d, | ||
torch.zeros(policy_d.size()).to(self.device)) | ||
|
||
gail_loss = expert_loss + policy_loss | ||
grad_pen = self.compute_grad_pen(expert_state, expert_action, | ||
policy_state, policy_action) | ||
|
||
loss += (gail_loss + grad_pen).item() | ||
n += 1 | ||
|
||
self.optimizer.zero_grad() | ||
(gail_loss + grad_pen).backward() | ||
self.optimizer.step() | ||
return loss / n | ||
|
||
def predict_reward(self, state, action, gamma, masks, update_rms=True): | ||
with torch.no_grad(): | ||
self.eval() | ||
d = self.trunk(torch.cat([state, action], dim=1)) | ||
s = torch.sigmoid(d) | ||
reward = s.log() - (1 - s).log() | ||
if self.returns is None: | ||
self.returns = reward.clone() | ||
|
||
if update_rms: | ||
self.returns = self.returns * masks * gamma + reward | ||
self.ret_rms.update(self.returns.cpu().numpy()) | ||
|
||
return reward / np.sqrt(self.ret_rms.var[0] + 1e-8) | ||
|
||
|
||
class ExpertDataset(torch.utils.data.Dataset): | ||
def __init__(self, file_name, num_trajectories=4, subsample_frequency=20): | ||
all_trajectories = torch.load(file_name) | ||
|
||
perm = torch.randperm(all_trajectories['states'].size(0)) | ||
idx = perm[:num_trajectories] | ||
|
||
self.trajectories = {} | ||
|
||
# See https://github.com/pytorch/pytorch/issues/14886 | ||
# .long() for fixing bug in torch v0.4.1 | ||
start_idx = torch.randint( | ||
0, subsample_frequency, size=(num_trajectories, )).long() | ||
|
||
for k, v in all_trajectories.items(): | ||
data = v[idx] | ||
|
||
if k != 'lengths': | ||
samples = [] | ||
for i in range(num_trajectories): | ||
samples.append(data[i, start_idx[i]::subsample_frequency]) | ||
self.trajectories[k] = torch.stack(samples) | ||
else: | ||
self.trajectories[k] = data // subsample_frequency | ||
|
||
self.i2traj_idx = {} | ||
self.i2i = {} | ||
|
||
self.length = self.trajectories['lengths'].sum().item() | ||
|
||
traj_idx = 0 | ||
i = 0 | ||
|
||
self.get_idx = [] | ||
|
||
for j in range(self.length): | ||
|
||
while self.trajectories['lengths'][traj_idx].item() <= i: | ||
i -= self.trajectories['lengths'][traj_idx].item() | ||
traj_idx += 1 | ||
|
||
self.get_idx.append((traj_idx, i)) | ||
|
||
i += 1 | ||
|
||
|
||
def __len__(self): | ||
return self.length | ||
|
||
def __getitem__(self, i): | ||
traj_idx, i = self.get_idx[i] | ||
|
||
return self.trajectories['states'][traj_idx][i], self.trajectories[ | ||
'actions'][traj_idx][i] |
Oops, something went wrong.