Skip to content

repo to maintain code for the rey-osterrieth complex figure project

License

Notifications You must be signed in to change notification settings

methlabUZH/rey-figure

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

91 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

How to train and evaluate models

  1. Prepare data (converting to grayscale, resizing and fusing the label files). This step assumes that your data is organized as follows:

    ├──data-root
        ├── DBdumps
        ├── ProlificExport
        ├── ReyFigures
        │ ├── data2018
        │ │ ├── newupload
        │ │ ├── newupload_15_11_2018
        │ │ ├── newupload_9_11_2018
        │ │ ├── uploadFinal
        │ │ └── uploadFinalREF
        │ └── data2021
        │     ├── KISPI
        │     ├── Tino_cropped
        │     ├── Typeform
        │     ├── USZ_fotos
        │     └── USZ_scans
        ├── UserRatingData
        └── simulated
    

    Run the following command

    python prepare_data.py --data-root /path/to/data/ --dataset data-2018-2021 --preprocessing 0 --image-size 116 150

    which will create a new directory serialized-data/data-2018-2021-116x150-pp0 in data-root, which contains the entire processed data and label files (train / test split).

  2. Train models, e.g. multilabel classifier, via the following command

    python train_multilabel.py --data-root /data-root/serialized-data/data-2018-2021-116x150-pp0 --results-dir /path/to/results --eval-test --id <id> --epochs 75 --batch-size 64 --lr 0.01 --gamma 0.95 --weighted-sampling 1 --image-size 116 150

    This will create a new dir in the specified results directory and save checkpoints + print outputs there. UPDATE: with hyperparameters.py and config.py one only has to run

    python train_multilabel.py
    
  3. To evaluate models, run the following command

    python eval_multilabel.py --data-root /data-root/serialized-data/data-2018-2021-116x150-pp0 --results-dir /path/to/results --image-size 116 150 --batch-size 100 --tta --validation --angles -2.5 -1 0 1 2.5 

    UPDATE: with hyperparameters.py and config.py one only has to run

    python eval_multilabel.py
    

    This will compute the overall MSE (note: change this to MAE in future), and create csv files which contains the prediction for each figure in the test set.

Note: the same workflow applies to training the regressor and for using different input sizes.

About

repo to maintain code for the rey-osterrieth complex figure project

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published