Skip to content

Keras implementation of Generative Adversarial Minority Oversampling for Spectral-Spatial Hyperspectral Image Classification

Notifications You must be signed in to change notification settings

mhaut/3D-HyperGAMO

Repository files navigation

Generative Adversarial Minority Oversampling for Spectral-Spatial Hyperspectral Image Classification

The Code for "Generative Adversarial Minority Oversampling for Spectral-Spatial Hyperspectral Image Classification". [https://ieeexplore.ieee.org/document/9347550]

S. K. Roy, J. M. Haut, M. E. Paoletti, S. R. Dubey and A. Plaza. 
Generative Adversarial Minority Oversampling for Spectral-Spatial Hyperspectral Image Classification
IEEE Transactions on Geoscience and Remote Sensing
DOI: 10.1109/TGRS.2021.3052048
February 2021.

3DGAMO

Install and activate requires packages (with conda)

conda env create -f enviroment.yml
conda activate 3D-HyperGAMO

Example of use

# Without datasets
git clone https://github.com/mhaut/3D-HyperGAMO/

# With datasets
git clone --recursive https://github.com/mhaut/3D-HyperGAMO/
cd HSI-datasets
python join_dsets.py

Run code

python main.py --dataset IP 

Reference code: https://github.com/SankhaSubhra/GAMO

About

Keras implementation of Generative Adversarial Minority Oversampling for Spectral-Spatial Hyperspectral Image Classification

Resources

Stars

Watchers

Forks

Languages