Skip to content

Commit

Permalink
Update llm-lora-ddp-gpus
Browse files Browse the repository at this point in the history
  • Loading branch information
pierre.delaunay committed Jan 22, 2025
1 parent 684e894 commit d02a574
Show file tree
Hide file tree
Showing 3 changed files with 518 additions and 23 deletions.
58 changes: 36 additions & 22 deletions benchmarks/llm/configs/llama3_8B_lora_single_device.yaml
Original file line number Diff line number Diff line change
@@ -1,83 +1,97 @@
# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Llama3 8B Instruct model
# using a Llama3.1 8B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN>
# tune download meta-llama/Meta-Llama-3.1-8B-Instruct --output-dir /tmp/Meta-Llama-3.1-8B-Instruct --ignore-patterns "original/consolidated.00.pth"
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config llama3/8B_lora_single_device
# tune run lora_finetune_single_device --config llama3_1/8B_lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config llama3/8B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
# tune run lora_finetune_single_device --config llama3_1/8B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.


output_dir: /tmp/torchtune/llama3_1_8B/lora_single_device # /tmp may be deleted by your system. Change it to your preference.

# Model Arguments
model:
_component_: torchtune.models.llama3_1.lora_llama3_1_8b
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model
path: /tmp/Meta-Llama-3.1-8B-Instruct/original/tokenizer.model
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelMetaCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3-8B-Instruct/original/
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
checkpoint_files: [
consolidated.00.pth
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3-8B-Instruct/
output_dir: ${output_dir}
model_type: LLAMA3
resume_from_checkpoint: False
save_adapter_weights_only: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torch.nn.CrossEntropyLoss
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 64
compile: False
gradient_accumulation_steps: 8 # Use to increase effective batch size
clip_grad_norm: null
compile: False # torch.compile the model + loss, True increases speed + decreases memory

# Logging
output_dir: /tmp/lora_finetune_output
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: False
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True

# Activations Memory
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory


# Profiler (disabled)
profiler:
Expand All @@ -100,6 +114,6 @@ profiler:
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
Loading

0 comments on commit d02a574

Please sign in to comment.