-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathReadme.m
118 lines (117 loc) · 4.62 KB
/
Readme.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
function Readme()
%README
%
% Mohamed Nasser, 2019
% Please cite these collections of MATLAB files as:
% M.M.S. Nasser, PlgCirMap: A MATLAB toolbox for computing the conformal
% maps from polygonal multiply connected domains onto circular domains.
% https://github.com/mmsnasser/plgcirmap.
%
%
% The main file in these collections of MATLAB files is the file
% plgcirmap.m
%
% f = plgcirmap(ver,alpha,preimg1)
%
% This MATLAB function compute the conformal mapping w=f(z) from a polygon
% domain G onto a circular domin D and its invers z=f^-1(w). The domain G
% is multiply connected of connectivity m with the boundary
% \Gamma=\Gamma_1 U ... U \Gamma_m. If G is bounded, then the external
% boundary component is \Gamma_m.
% When m=1, the domain G is simply connected domain.
%
%
% Input:
% ver (ver is a Cell Array where ver{k} contains the vertices of the
% polygon k, k=1,2,...,m).
% alpha (alpha is an auxiliary point in the domain G if G is bounded
% and alpha=inf if G is unbounded)
% preimg1 (optional) (preimg1 is the last vertix of the last polygon)
% If preimg1 is given, then the conformal mapping is normalized
% by: f(alpha)=0 and f(ver{end}(end))=1
% If preimg1 is not given, then the conformal mapping is
% normalized by: f(alpha)=0 and f'(alpha)>0
%
% Output:
% f, an object with:
%
% f.ver = ver (ver is as above)
% f.alpha = alpha (alpha is as above)
% f.nv = nv (nv is a vector of length m where nv(k) is the number of nodes
% on the boundary component \Gamma_k, k=1,2,...,m)
% f.et = et (et the parametrization of the boundary of the polygonal
% domain G)
% f.etp = etp (etp is the first derivative of the parametrization et)
% f.zet = zet (zet the parametrization of the boundary of the circular
% domain D; zet=f(et))
% f.zetp = zetp (zetp is the first derivative of the parametrization zet)
% f.cent = cent (cent is a vector of length m where cent(k) is the center
% of the circle C_k=f(\Gamma_k), k=1,2,...,m.
% If G is bounded, then cent(m)=0.)
% f.rad = rad (rad is a vector of length m where rad(k) is the radius
% of the circle C_k=f(\Gamma_k), k=1,2,...,m.
% If G is bounded, then rad(m)=1.)
% f.imgver = imgver (imgver is a Cell Array where imgver{k}, k=1,2,...,m,
% contains the image of the vertices ver{k} under the
% conformal map, i.e., imgver=f(ver)).
% f.inf (only for unbounded G where f.inf=f'(inf)
%
%
%
%
% In these collection of MATLAB files, we use the MATLAB function
% fbie.m
% which is available in:
%
% M.M.S. Nasser, FBIEGNK: A MATLAB toolbox for fast solution of
% boundary integral equations with the generalized Neumann kernel,
% Version 1.1, 2016. https://github.com/mmsnasser/FBIEGNK.
%
% and in:
% M.M.S. Nasser, Fast solution of boundary integral equations with the
% generalized Neumann kernel, Electronic Transactions on Numerical
% Analysis, 44 (2015) 189--229.
%
%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% The MATLAB function fbie and other functions in this toolbox require
% the following files:
%
% zfmm2dpart.m
% fmm2d_r2012a.mexw32
% fmm2d_r2012a.mexw64
% pthreadGC2-w32.dll
% pthreadGC2-w64.dll
%
% from the MATLAB Toolbox:
% L. GREENGARD AND Z. GIMBUTAS , FMMLIB2D: A MATLAB toolbox for
% fast multipole method in two dimensions, Version 1.2, 2012.
%
% You can download the whole toolbox from:
% http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html
% or from
% https://github.com/zgimbutas/fmmlib2d
%
% Please see:
% https://github.com/zgimbutas/fmmlib2d/blob/master/COPYING
% for more details.
%
% PLEASE cite the FMMLIB2D toolbox whenever you use the PlgCirMap toolbox
%
% Acknowledgments:
% I would like to thank Prof. Leslie Greengard and Prof. Zydrunas Gimbutas
% for making the MATLAB toolbox FMMLIB2D publicly available.
%
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version. This program is distributed in
% the hope that it will be useful, but WITHOUT ANY WARRANTY; without
% even the implied warranty of MERCHANTABILITY or FITNESS FOR A
% PARTICULAR PURPOSE. See the GNU General Public License for more
% details. You should have received a copy of the GNU General Public
% License along with this program;
% if not, see <http://www.gnu.org/licenses/>.
%
end