-
Notifications
You must be signed in to change notification settings - Fork 4
mmsnasser/PlgCirMap
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
function Readme() %README % % Mohamed Nasser, 2019 % Please cite these collections of MATLAB files as: % M.M.S. Nasser, PlgCirMap: A MATLAB toolbox for computing the conformal % maps from polygonal multiply connected domains onto circular domains. % https://github.com/mmsnasser/plgcirmap. % % % The main file in these collections of MATLAB files is the file % plgcirmap.m % % f = plgcirmap(ver,alpha,preimg1) % % This MATLAB function compute the conformal mapping w=f(z) from a polygon % domain G onto a circular domin D and its invers z=f^-1(w). The domain G % is multiply connected of connectivity m with the boundary % \Gamma=\Gamma_1 U ... U \Gamma_m. If G is bounded, then the external % boundary component is \Gamma_m. % When m=1, the domain G is simply connected domain. % % % Input: % ver (ver is a Cell Array where ver{k} contains the vertices of the % polygon k, k=1,2,...,m). % alpha (alpha is an auxiliary point in the domain G if G is bounded % and alpha=inf if G is unbounded) % preimg1 (optional) (preimg1 is the last vertix of the last polygon) % If preimg1 is given, then the conformal mapping is normalized % by: f(alpha)=0 and f(ver{end}(end))=1 % If preimg1 is not given, then the conformal mapping is % normalized by: f(alpha)=0 and f'(alpha)>0 % % Output: % f, an object with: % % f.ver = ver (ver is as above) % f.alpha = alpha (alpha is as above) % f.nv = nv (nv is a vector of length m where nv(k) is the number of nodes % on the boundary component \Gamma_k, k=1,2,...,m) % f.et = et (et the parametrization of the boundary of the polygonal % domain G) % f.etp = etp (etp is the first derivative of the parametrization et) % f.zet = zet (zet the parametrization of the boundary of the circular % domain D; zet=f(et)) % f.zetp = zetp (zetp is the first derivative of the parametrization zet) % f.cent = cent (cent is a vector of length m where cent(k) is the center % of the circle C_k=f(\Gamma_k), k=1,2,...,m. % If G is bounded, then cent(m)=0.) % f.rad = rad (rad is a vector of length m where rad(k) is the radius % of the circle C_k=f(\Gamma_k), k=1,2,...,m. % If G is bounded, then rad(m)=1.) % f.imgver = imgver (imgver is a Cell Array where imgver{k}, k=1,2,...,m, % contains the image of the vertices ver{k} under the % conformal map, i.e., imgver=f(ver)). % f.inf (only for unbounded G where f.inf=f'(inf) % % % % % In these collection of MATLAB files, we use the MATLAB function % fbie.m % which is available in: % % M.M.S. Nasser, FBIEGNK: A MATLAB toolbox for fast solution of % boundary integral equations with the generalized Neumann kernel, % Version 1.1, 2016. https://github.com/mmsnasser/FBIEGNK. % % and in: % M.M.S. Nasser, Fast solution of boundary integral equations with the % generalized Neumann kernel, Electronic Transactions on Numerical % Analysis, 44 (2015) 189--229. % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % The MATLAB function fbie and other functions in this toolbox require % the following files: % % zfmm2dpart.m % fmm2d_r2012a.mexw32 % fmm2d_r2012a.mexw64 % pthreadGC2-w32.dll % pthreadGC2-w64.dll % % from the MATLAB Toolbox: % L. GREENGARD AND Z. GIMBUTAS , FMMLIB2D: A MATLAB toolbox for % fast multipole method in two dimensions, Version 1.2, 2012. % % You can download the whole toolbox from: % http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html % or from % https://github.com/zgimbutas/fmmlib2d % % Please see: % https://github.com/zgimbutas/fmmlib2d/blob/master/COPYING % for more details. % % PLEASE cite the FMMLIB2D toolbox whenever you use the PlgCirMap toolbox % % Acknowledgments: % I would like to thank Prof. Leslie Greengard and Prof. Zydrunas Gimbutas % for making the MATLAB toolbox FMMLIB2D publicly available. % % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. This program is distributed in % the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A % PARTICULAR PURPOSE. See the GNU General Public License for more % details. You should have received a copy of the GNU General Public % License along with this program; % if not, see <http://www.gnu.org/licenses/>. % end
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published