Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ENH, WIP] Add Estimation of Significant Connectivity #101

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 28 additions & 1 deletion doc/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@ @article{NolteEtAl2004
year = {2004}
}

@INPROCEEDINGS{li_linear_2017,
@INPROCEEDINGS{LiEtAl2017,
author = {Li, Adam and Gunnarsdottir, Kristin M. and Inati, Sara and Zaghloul, Kareem and Gale, John and Bulacio, Juan and Martinez-Gonzalez, Jorge and Sarma, Sridevi V.},
booktitle = {2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)},
title = {Linear time-varying model characterizes invasive EEG signals generated from complex epileptic networks},
Expand All @@ -227,6 +227,33 @@ @article{ColcloughEtAl2015
pages = {439--448}
}

adam2392 marked this conversation as resolved.
Show resolved Hide resolved
@Article{LiEtAl2021,
author = {Adam Li and Chester Huynh and Zachary Fitzgerald and Iahn Cajigas and Damian Brusko and Jonathan Jagid and Angel O. Claudio and Andres M. Kanner and Jennifer Hopp and Stephanie Chen and Jennifer Haagensen and Emily Johnson and William Anderson and Nathan Crone and Sara Inati and Kareem A. Zaghloul and Juan Bulacio and Jorge Gonzalez-Martinez and Sridevi V. Sarma},
doi = {10.1038/s41593-021-00901-w},
issn = {15461726},
issue = {10},
journal = {Nature Neuroscience},
title = {Neural fragility as an EEG marker of the seizure onset zone},
volume = {24},
year = {2021},
}

@article{RecanatesiEtAl2022,
alexrockhill marked this conversation as resolved.
Show resolved Hide resolved
title = {Metastable attractors explain the variable timing of stable behavioral action sequences},
volume = {110},
issn = {08966273},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0896627321007790},
doi = {10.1016/j.neuron.2021.10.011},
language = {en},
number = {1},
urldate = {2022-03-19},
journal = {Neuron},
author = {Recanatesi, Stefano and Pereira-Obilinovic, Ulises and Murakami, Masayoshi and Mainen, Zachary and Mazzucato, Luca},
month = jan,
year = {2022},
pages = {139--153.e9},
}

@article{StamEtAl2012,
title={Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics},
volume={62},
Expand Down
140 changes: 67 additions & 73 deletions examples/dynamic/mne_var_connectivity.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,21 +6,21 @@
===================================================

Compute a VAR (linear system) model from time-series
activity :footcite:`li_linear_2017` using a
continuous iEEG recording.
activity :footcite:`LiEtAl2017`.

In this example, we will demonstrate how to compute
a VAR model with different statistical assumptions.
"""

# Authors: Adam Li <adam2392@gmail.com>
# Alex Rockhill <aprockhill@mailbox.org>
#
# License: BSD (3-clause)

import numpy as np

import mne
from mne import make_fixed_length_epochs
from mne_bids import BIDSPath, read_raw_bids
from mne.datasets import sample

import matplotlib.pyplot as plt

Expand All @@ -29,80 +29,31 @@
# %%
# Load the data
# -------------
# Here, we first download an ECoG dataset that was recorded from a patient with
# epilepsy. To facilitate loading the data, we use `mne-bids
# <https://mne.tools/mne-bids/>`_.
# Here, we first download a somatosensory dataset.
#
# Then, we will do some basic filtering and preprocessing using MNE-Python.

# paths to mne datasets - sample ECoG
bids_root = mne.datasets.epilepsy_ecog.data_path()

# first define the BIDS path
bids_path = BIDSPath(root=bids_root, subject='pt1', session='presurgery',
task='ictal', datatype='ieeg', extension='vhdr')

# Then we'll use it to load in the sample dataset. Here we use a format (iEEG)
# that is only available in MNE-BIDS 0.7+, so it will emit a warning on
# versions <= 0.6
raw = read_raw_bids(bids_path=bids_path, verbose=False)

line_freq = raw.info['line_freq']
print(f'Data has a power line frequency at {line_freq}.')

# Pick only the ECoG channels, removing the ECG channels
raw.pick_types(ecog=True)

# Load the data
raw.load_data()

# Then we remove line frequency interference
raw.notch_filter(line_freq)

# drop bad channels
raw.drop_channels(raw.info['bads'])

# %%
# Crop the data for this example
# ------------------------------
#
# We find the onset time of the seizure and remove all data after that time.
# In this example, we are only interested in analyzing the interictal
# (non-seizure) data period.
#
# One might be interested in analyzing the seizure period also, which we
# leave as an exercise for our readers!

# Find the annotated events
events, event_id = mne.events_from_annotations(raw)

# get sample at which seizure starts
onset_id = event_id['onset']
onset_idx = np.argwhere(events[:, 2] == onset_id)
onset_sample = events[onset_idx, 0].squeeze()
onset_sec = onset_sample / raw.info['sfreq']
data_path = sample.data_path()
raw_fname = data_path / 'MEG' / 'sample' / \
'sample_audvis_filt-0-40_raw.fif'
event_fname = data_path / 'MEG' / 'sample' / \
'sample_audvis_filt-0-40_raw-eve.fif'

# remove all data after the seizure onset
raw = raw.crop(tmin=0, tmax=onset_sec, include_tmax=False)
# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname)
events = mne.read_events(event_fname)

# %%
# Create Windows of Data (Epochs) Using MNE-Python
# ------------------------------------------------
# We have a continuous iEEG snapshot that is about 60 seconds long
# (after cropping). We would like to estimate a VAR model over a sliding window
# of 500 milliseconds with a 250 millisecond step size.
#
# We can use `mne.make_fixed_length_epochs` to create an Epochs data structure
# representing this sliding window.
# Add a bad channel
raw.info['bads'] += ['MEG 2443']

epochs = make_fixed_length_epochs(raw=raw, duration=0.5, overlap=0.25)
times = epochs.times
ch_names = epochs.ch_names
# Pick MEG gradiometers
picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=True,
exclude='bads')

print(epochs)
print(epochs.times)
print(epochs.event_id)
print(epochs.events)
# Create epochs for the visual condition
event_id, tmin, tmax = 3, -0.2, 1.5 # need a long enough epoch for 5 cycles
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6))


# %%
Expand All @@ -114,7 +65,7 @@
# time-varying linear system.

conn = vector_auto_regression(
data=epochs.get_data(), times=times, names=ch_names)
data=epochs.get_data(), times=epochs.times, names=epochs.ch_names)

# this returns a connectivity structure over time
print(conn)
Expand Down Expand Up @@ -158,6 +109,49 @@
im = ax.imshow(rescov, cmap='viridis', aspect='equal', interpolation='none')
fig.colorbar(im, cax=cax, orientation='horizontal')

# %%
# Estimate significant connections using a time-shuffled null distribution
# ------------------------------------------------------------------------
# We can maintain autocorrelations by shuffling the channels in time relative
# to one another as explained in :footcite:`RecanatesiEtAl2022`. The pairwise
# correlations will then be an estimate of connectivity under a null model
# of uncorrelated neural data.

null_dist = list()
data = epochs.get_data()
rng = np.random.default_rng(99)
for niter in range(10): # 1000 or more would be reasonable for a real analysis
print(f'Computing null connectivity {niter}')
for epo_idx in range(data.shape[0]):
for ch_idx in range(data.shape[1]):
# pick a random starting time for each epoch and channel
start_idx = np.round(rng.random() * data.shape[2]).astype(int)
data[epo_idx, ch_idx] = np.concatenate(
[data[epo_idx, ch_idx, start_idx:],
data[epo_idx, ch_idx, :start_idx]])
null_dist.append(vector_auto_regression(
data=data, times=epochs.times, names=epochs.ch_names).get_data())

null_dist = np.array(null_dist)

# %%
# Visualize significant connections over time with animation
# ----------------------------------------------------------
# Let's animate over time to visualize the significant connections at each
# epoch.
adam2392 marked this conversation as resolved.
Show resolved Hide resolved

con_data = conn.get_data()

# to bonferroni correct across epochs, use the following:
threshes = np.quantile(abs(null_dist), 1 - (0.05 / con_data.shape[0]),
axis=(0, 1))

# now, plot the connectivity as it changes for each epoch
n_lines = np.sum(abs(con_data) > threshes, axis=(1, 2))
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'), figsize=(10, 10))
anim, ax = conn.plot_circle(n_lines=n_lines, fontsize_names=4,
fig=fig, ax=ax)

# %%
# Compute one VAR model using all epochs
# --------------------------------------
Expand All @@ -167,7 +161,7 @@
# epochs.

conn = vector_auto_regression(
data=epochs.get_data(), times=times, names=ch_names,
data=epochs.get_data(), times=epochs.times, names=epochs.ch_names,
model='avg-epochs')

# this returns a connectivity structure over time
Expand Down
10 changes: 4 additions & 6 deletions examples/sensor_connectivity.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,6 @@
#
# License: BSD (3-clause)

import os.path as op

import mne
from mne_connectivity import spectral_connectivity_epochs
from mne.datasets import sample
Expand All @@ -24,10 +22,10 @@
###############################################################################
# Set parameters
data_path = sample.data_path()
raw_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_filt-0-40_raw.fif')
event_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_filt-0-40_raw-eve.fif')
raw_fname = data_path / 'MEG' / 'sample' / \
'sample_audvis_filt-0-40_raw.fif'
event_fname = data_path / 'MEG' / 'sample' / \
'sample_audvis_filt-0-40_raw-eve.fif'

# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname)
Expand Down
2 changes: 1 addition & 1 deletion mne_connectivity/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -774,7 +774,7 @@ def rename_nodes(self, mapping):

@copy_function_doc_to_method_doc(plot_connectivity_circle)
def plot_circle(self, **kwargs):
plot_connectivity_circle(
return plot_connectivity_circle(
self.get_data(),
node_names=self.names,
indices=self.indices, **kwargs)
Expand Down
38 changes: 37 additions & 1 deletion mne_connectivity/viz/circle.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,10 @@
#
# License: Simplified BSD

import numpy as np
from mne.utils import warn
from mne.viz.circle import _plot_connectivity_circle
from matplotlib.animation import FuncAnimation


def plot_connectivity_circle(con, node_names, indices=None, n_lines=None,
Expand Down Expand Up @@ -105,7 +107,7 @@ def plot_connectivity_circle(con, node_names, indices=None, n_lines=None,

Returns
-------
fig : instance of matplotlib.figure.Figure
fig : instance of matplotlib.figure.Figure | instance of matplotlib.animation.FuncAnimation # noqa E501
The figure handle.
ax : instance of matplotlib.projections.polar.PolarAxes
The subplot handle.
Expand Down Expand Up @@ -141,6 +143,40 @@ def plot_connectivity_circle(con, node_names, indices=None, n_lines=None,
subplot = (subplot,)
ax = plt.subplot(*subplot, polar=True)

if con.ndim == 3:
if ax is None:
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'),
facecolor='black')
else:
fig = ax.figure

def update_connectivity(i):
ax.clear()
these_n_lines = n_lines[i] if isinstance(n_lines, np.ndarray) \
else n_lines
_plot_connectivity_circle(
con=con[i], node_names=node_names, indices=indices,
n_lines=these_n_lines, node_angles=node_angles,
node_width=node_width, node_height=node_height,
node_colors=node_colors, facecolor=facecolor,
textcolor=textcolor, node_edgecolor=node_edgecolor,
linewidth=linewidth, colormap=colormap, vmin=vmin, vmax=vmax,
colorbar=(i == 0 and colorbar), title=title,
colorbar_size=colorbar_size,
colorbar_pos=colorbar_pos, fontsize_title=fontsize_title,
fontsize_names=fontsize_names,
fontsize_colorbar=fontsize_colorbar, padding=padding, ax=ax,
interactive=interactive, node_linewidth=node_linewidth,
show=show)
# circle is size 10
ax.text(3 * np.pi / 4, 25, f'epoch = {i}', color='white',
clip_on=False)

anim = FuncAnimation(fig, update_connectivity,
frames=con.shape[0],
blit=False, repeat=False)
return anim, ax

return _plot_connectivity_circle(
con=con, node_names=node_names, indices=indices, n_lines=n_lines,
node_angles=node_angles, node_width=node_width,
Expand Down
6 changes: 6 additions & 0 deletions mne_connectivity/viz/tests/test_circle.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import matplotlib.pyplot as plt
from mne.viz import circular_layout

from mne_connectivity import EpochConnectivity
from mne_connectivity.viz import plot_connectivity_circle


Expand Down Expand Up @@ -92,4 +93,9 @@ def test_plot_connectivity_circle():
group_boundaries=[-1])
pytest.raises(ValueError, circular_layout, label_names, node_order,
group_boundaries=[20, 0])

# test animation
conn = EpochConnectivity(data=np.repeat(con.flatten()[None], 10, axis=0),
n_nodes=68)
anim, ax = conn.plot_circle(n_lines=3)
plt.close('all')