Skip to content

Commit

Permalink
Fixups to render properly mathjax
Browse files Browse the repository at this point in the history
Signed-off-by: Marcello Seri <marcello.seri@gmail.com>
  • Loading branch information
mseri committed Sep 27, 2023
1 parent d2b9073 commit 72b1bf2
Showing 1 changed file with 22 additions and 21 deletions.
43 changes: 22 additions & 21 deletions hm.tex
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
\setcounter{FileDepth}{0}
\boolfalse{FileSectionNames} % Number the file names
\booltrue{CombineHigherDepths} % Combine parts/chapters/sections
\HTMLAuthor{Marcello Seri}
\HTMLLanguage{en-UK}
\HTMLDescription{Lecture notes for Hamiltonian Mechanics}

Expand All @@ -42,6 +41,7 @@
\usepackage{units}

\usepackage{tikz}
\tikzset{every picture/.style={ampersand replacement=\&}}
\usepackage{pgfplots}
\usepackage{tikz-3dplot}
\pgfplotsset{compat=1.16}
Expand Down Expand Up @@ -2640,7 +2640,7 @@ \chapter*{Preface}
g_{ij}(q) = \sum_{k=1}^N m_k\left\langle\frac{\partial \vb*{x}_k}{\partial q^i},\frac{\partial \vb*{x}_k}{\partial q^j}\right\rangle
\end{equation}
is the riemannian metric induced by the euclidean metric on $Q$ given by
$ds^2 = \sum_{j=1}^N m_j\langle\dd \vb*{x}_j, \dd{\vb*{x}_j}\rangle$.
$ds^2 = \sum_{j=1}^N m_j\langle\dd{\vb*{x}_j}, \dd{\vb*{x}_j}\rangle$.
\end{theorem}

This can be further generalized to mechanical systems which are constrained on the tangent bundle $TM$ of a manifold $M$ of dimension $m$.
Expand Down Expand Up @@ -3005,15 +3005,15 @@ \chapter*{Preface}
\end{equation}
can be explicitly computed using its definition:
\begin{align}
\dd H(q,p) & = \dd \left( p_i\dot q^i(q,p) - L(q, \dot q(q,p)) \right) \\
& = \dot q^i \dd p_i + p_i \dd \dot q^i(q,p) - \frac{\partial L}{\partial q^i} \dd q^i - \frac{\partial L}{\partial \dot q^i} \dd \dot q^i \\
& = \dot q^i \dd p_i - \dot p_i \dd q^i, \label{eq:dHlc2}
\dd H(q,p) & = \dd{}\left( p_i\dot{q}^i(q,p) - L(q, \dot{q}(q,p)) \right) \\
& = \dot{q}^i \dd{p_i} + p_i \dd{\dot{q}^i}(q,p) - \frac{\partial L}{\partial q^i} \dd{q^i} - \frac{\partial L}{\partial \dot{q}^i} \dd{\dot{q}^i} \\
& = \dot{q}^i \dd{p_i} - \dot{p}_i \dd{q^i}, \label{eq:dHlc2}
\end{align}
where we used the Euler-Lagrange equations to get
\begin{equation}
p_i = \frac{\partial L}{\partial \dot q^i}
p_i = \frac{\partial L}{\partial \dot{q}^i}
\qquad\mbox{and}\qquad
\dot p_i = \frac{\dd }{\dd t}\frac{\partial L}{\partial \dot q^i} = \frac{\partial L}{\partial q^i}.
\dot p_i = \frac{\dd }{\dd t}\frac{\partial L}{\partial \dot{q}^i} = \frac{\partial L}{\partial q^i}.
\end{equation}
The theorem follows comparing coefficients in \eqref{eq:dHlc} and \eqref{eq:dHlc2}.
\end{proof}
Expand Down Expand Up @@ -3627,12 +3627,12 @@ \chapter*{Preface}
\end{equation}
which imply
\begin{equation}
\langle\vb*{p}, \dd\vb*{x}\rangle = \|\vb*{p}\|\|\dd \vb*{x}\| = \frac{E}{c(\vb*{x})}\|\dd\vb*{x}\|.
\langle\vb*{p}, \dd{\vb*{x}}\rangle = \|\vb*{p}\|\|\dd{\vb*{x}}\| = \frac{E}{c(\vb*{x})}\|\dd{\vb*{x}}\|.
\end{equation}

For the action \eqref{eq:variationalMaupertuis} we end up with
\begin{equation}
S_0 = E \int_{\vb*{x}_1}^{\vb*{x}_2} \frac{\|\dd\vb*{x}\|}{c(\vb*{x})},
S_0 = E \int_{\vb*{x}_1}^{\vb*{x}_2} \frac{\|\dd{\vb*{x}}\|}{c(\vb*{x})},
\end{equation}
which is $E$ multiplied by the time of propagation of light between the points $\vb*{x}_1$ and $\vb*{x}_2$.

Expand All @@ -3645,7 +3645,7 @@ \chapter*{Preface}
\end{equation}
where
\begin{equation}
\dd s^2 = \dd \vb*{x}^2 = \dd x^2 + \dd y^2 + \dd z^2.
\dd s^2 = \dd{\vb*{x}}^2 = \dd x^2 + \dd y^2 + \dd z^2.
\end{equation}
\end{theorem}

Expand Down Expand Up @@ -4145,10 +4145,10 @@ \chapter*{Preface}
\end{equation}
Using the definition, we have
\begin{equation}
\widetilde p_i \dd \widetilde q^i =
\frac{\partial q^k}{\partial \widetilde q^i} p_k \frac{\partial \widetilde q^i}{\partial q^l} \dd q^l
= \delta^k_l p_k \dd q^l
= p_k \dd q^k.
\widetilde{p}_i \dd{\widetilde{q}^i} =
\frac{\partial q^k}{\partial \widetilde{q}^i} p_k \frac{\partial \widetilde{q}^i}{\partial q^l} \dd{q^l}
= \delta^k_l p_k \dd{q^l}
= p_k \dd{q^k}.
\end{equation}
\end{proof}

Expand Down Expand Up @@ -4976,11 +4976,12 @@ \chapter*{Preface}

\subsection{Time-dependent hamiltonian systems}

\textcolor{red}{TODO: correct and rewrite}
To discuss canonical transformations for time-dependent hamiltonian systems, we consider again the extended phase space $T^*M\times \mathbb{R}^2$ with the coordinates $(q^1,\ldots,q^n,p_1,\ldots,p_n, q^{n+1}=t, p_{n+1}=E)$ introduced in Section~\ref{sec:timedepH} and symplectic form $\widetilde\omega = \dd p_i\wedge \dd q^i - \dd E\wedge \dd t$ discussed in Example~\ref{ex:timedepH}.

In terms of the tautological one--form, we have
\begin{equation}
\widetilde\omega = \dd \widetilde\eta, \quad \widetilde\eta = p_i \dd q^i - E \dd t.
\widetilde{\omega} = \dd{\widetilde{\eta}}, \quad \widetilde{\eta} = p_i \dd{q^i} - E \dd{t}.
\end{equation}
A transformation $\widetilde\Phi : T^*M\times \mathbb{R}^2 \to T^*M\times \mathbb{R}^2$ that associates $(q,p,t,E)$ to $(Q,P,T,\widetilde E)$ is canonical if it preserves the symplectic form, that is, if ${\widetilde\Phi}^* \widetilde \omega = \widetilde \omega$. Exactly as in the time-independent case, one can show that there exists a function $S(q,p,t,E)$ such that
\begin{equation}\label{eq:timedepgen}
Expand Down Expand Up @@ -5806,9 +5807,9 @@ \chapter*{Preface}

What we have seen so far seems very abstract, however there is a practical and direct approach to make computations in the action--angle variables that also helps clarifying the first half of the name.

Since $\dd p \wedge \dd q = \dd I \wedge \dd \phi$, the difference $p\dd q - I\dd \phi$ is a closed one--form on the neighborhood $U(M_{E^0})$. Thus, locally,
Since $\dd{p} \wedge \dd {q} = \dd{I} \wedge \dd {phi}$, the difference $p\dd q - I\dd \phi$ is a closed one--form on the neighborhood $U(M_{E^0})$. Thus, locally,
\begin{equation}
p\dd q - I\dd \phi = \dd S
p\dd{q} - I\dd{\phi} = \dd{S}
\end{equation}
for some generating function $S = S(q,\phi)$.
Consider the fundamental cycles $\gamma_1, \ldots, \gamma_n$ on $\mathbb{T}^n$,
Expand All @@ -5820,16 +5821,16 @@ \chapter*{Preface}
where $k=1,\ldots,n$.
Integrating $\dd S$ on the cycle $\gamma_i$ one obtains
\begin{equation}
I_k = \frac1{2\pi} \oint_{\gamma_k} p \dd q, \quad k=1,\ldots,n.
I_k = \frac1{2\pi} \oint_{\gamma_k} p \dd{q}, \quad k=1,\ldots,n.
\end{equation}
This formula, that looks like Maupertuis action, can be used to compute the canonical actions.
To compute the conjugate angles, we use the generating function $\widetilde S = \widetilde S(q,I)$ of the canonical transformation $(q,p) \mapsto (\phi, I)$. That is, the function such that
\begin{equation}
\dd\widetilde S = p\dd q - \phi \dd I.
\dd{\widetilde{S}} = p\dd{q} - \phi \dd{I}.
\end{equation}
Since $I = I(E)$, a restriction of the closed one--form $\dd\widetilde S$ on the torus $M_E$ can be written as $\dd\widetilde S\big|_{M_E} = p\dd q$ and, therefore,
Since $I = I(E)$, a restriction of the closed one--form $\dd{\widetilde S}$ on the torus $M_E$ can be written as $\dd{\widetilde S}\big|_{M_E} = p\dd{q}$ and, therefore,
\begin{equation}
\widetilde S(q,I) = \int_{x_0(q,E)}^{(q, p(q,E))} p \dd q, \quad E = E(I),
\widetilde S(q,I) = \int_{x_0(q,E)}^{(q, p(q,E))} p \dd{q}, \quad E = E(I),
\end{equation}
where the integral along a path on $M_E$ \emph{locally} does not depend on the choice of the path itself (globally this is generally false, a clarification would require a discussion of holonomy).
Thus, the canonical angles can be determined as
Expand Down

0 comments on commit 72b1bf2

Please sign in to comment.