It contains application of naive bayes model on a big textual data set. The problems is an example of NLP based solution on 2 different kind of vetorization.
DonorsChoose is a United States–based nonprofit organization that allows individuals to donate directly to public school classroom projects. Founded in 2000 by former public school teacher Charles Best, DonorsChoose was among the first civic crowdfunding platforms of its kind.
DonorsChoose.org receives hundreds of thousands of project proposals each year for classroom projects in need of funding. Right now, a large number of volunteers is needed to manually screen each submission before it's approved to be posted on the DonorsChoose.org website.
Next year, DonorsChoose.org expects to receive close to 500,000 project proposals. As a result, there are three main problems they need to solve:
- How to scale current manual processes and resources to screen 500,000 projects so that they can be posted as quickly and as efficiently as possible
- How to increase the consistency of project vetting across different volunteers to improve the experience for teachers
- How to focus volunteer time on the applications that need the most assistance
The goal of the competition is to predict whether or not a DonorsChoose.org project proposal submitted by a teacher will be approved, using the text of project descriptions as well as additional metadata about the project, teacher, and school. DonorsChoose.org can then use this information to identify projects most likely to need further review before approval.
The train.csv
data set provided by DonorsChoose contains the following features:
Feature | Description |
---|---|
project_id |
A unique identifier for the proposed project. Example: p036502 |
project_title |
Title of the project. Examples:
|
project_grade_category |
Grade level of students for which the project is targeted. One of the following enumerated values:
|
project_subject_categories |
One or more (comma-separated) subject categories for the project from the following enumerated list of values:
Examples:
|
school_state |
State where school is located (Two-letter U.S. postal code). Example: WY |
project_subject_subcategories |
One or more (comma-separated) subject subcategories for the project. Examples:
|
project_resource_summary |
An explanation of the resources needed for the project. Example:
|
project_essay_1 |
First application essay* |
project_essay_2 |
Second application essay* |
project_essay_3 |
Third application essay* |
project_essay_4 |
Fourth application essay* |
project_submitted_datetime |
Datetime when project application was submitted. Example: 2016-04-28 12:43:56.245 |
teacher_id |
A unique identifier for the teacher of the proposed project. Example: bdf8baa8fedef6bfeec7ae4ff1c15c56 |
teacher_prefix |
Teacher's title. One of the following enumerated values:
|
teacher_number_of_previously_posted_projects |
Number of project applications previously submitted by the same teacher. Example: 2 |
* See the section Notes on the Essay Data for more details about these features.
Additionally, the resources.csv
data set provides more data about the resources required for each project. Each line in this file represents a resource required by a project:
Feature | Description |
---|---|
id |
A project_id value from the train.csv file. Example: p036502 |
description |
Desciption of the resource. Example: Tenor Saxophone Reeds, Box of 25 |
quantity |
Quantity of the resource required. Example: 3 |
price |
Price of the resource required. Example: 9.95 |
Note: Many projects require multiple resources. The id
value corresponds to a project_id
in train.csv, so you use it as a key to retrieve all resources needed for a project:
The data set contains the following label (the value you will attempt to predict):
Label | Description |
---|---|
project_is_approved |
A binary flag indicating whether DonorsChoose approved the project. A value of 0 indicates the project was not approved, and a value of 1 indicates the project was approved. |