Large Language Model API interface. This is a simple API interface for large language models which run on Ollama, Anthopic and Mistral (OpenAI might be added later).
The module includes the ability to utilize:
- Maintaining a session of messages
- Tool calling support, including using your own tools (aka Tool plugins)
- Creating embedding vectors from text
- Streaming responses
- Multi-modal support (aka, Images and Attachments)
There is a command-line tool included in the module which can be used to interact with the API. If you have docker installed, you can use the following command to run the tool, without installation:
# Display help
docker run ghcr.io/mutablelogic/go-llm:latest --help
# Interact with Claude to retrieve news headlines, assuming
# you have an API key for Anthropic and NewsAPI
docker run \
-e OLLAMA_URL -e MISTRAL_API_KEY -e NEWSAPI_KEY \
ghcr.io/mutablelogic/go-llm:latest \
chat mistral-small-latest --prompt "What is the latest news?" --no-stream
See below for more information on how to use the command-line tool (or how to
install it if you have a go
compiler).
See the documentation here for integration into your own Go programs.
For each LLM provider, you create an agent which can be used to interact with the API. To create an Ollama agent,
import (
"github.com/mutablelogic/go-llm/pkg/ollama"
)
func main() {
// Create a new agent - replace the URL with the one to your Ollama instance
agent, err := ollama.New("https://ollama.com/api/v1/")
if err != nil {
panic(err)
}
// ...
}
To create an Anthropic agent with an API key stored as an environment variable,
import (
"github.com/mutablelogic/go-llm/pkg/anthropic"
)
func main() {
// Create a new agent
agent, err := anthropic.New(os.Getenv("ANTHROPIC_API_KEY"))
if err != nil {
panic(err)
}
// ...
}
For Mistral models, you can use:
import (
"github.com/mutablelogic/go-llm/pkg/mistral"
)
func main() {
// Create a new agent
agent, err := mistral.New(os.Getenv("MISTRAL_API_KEY"))
if err != nil {
panic(err)
}
// ...
}
You can append options to the agent creation to set the client/server communication options, such as user agent strings, timeouts, debugging, rate limiting, adding custom headers, etc. See here for more information.
There is also an aggregated agent which can be used to interact with multiple providers at once. This is useful if you want to use models from different providers simultaneously.
import (
"github.com/mutablelogic/go-llm/pkg/agent"
)
func main() {
// Create a new agent which aggregates multiple providers
agent, err := agent.New(
agent.WithAnthropic(os.Getenv("ANTHROPIC_API_KEY")),
agent.WithMistral(os.Getenv("MISTRAL_API_KEY")),
agent.WithOllama(os.Getenv("OLLAMA_URL")),
)
if err != nil {
panic(err)
}
// ...
}
You create a chat session with a model as follows,
import (
"github.com/mutablelogic/go-llm"
)
func session(ctx context.Context, agent llm.Agent) error {
// Create a new chat session
session := agent.Model(context.TODO(), "claude-3-5-haiku-20241022").Context()
// Repeat forever
for {
err := session.FromUser(ctx, "hello")
if err != nil {
return err
}
// Print the response for the zero'th completion
fmt.Println(session.Text(0))
}
}
The Context
object will continue to store the current session and options, and will
ensure the session is maintained across multiple calls.
You can generate embedding vectors using an appropriate model with Ollama or Mistral models:
import (
"github.com/mutablelogic/go-llm"
)
func embedding(ctx context.Context, agent llm.Agent) error {
// Create a new chat session
vector, err := agent.Model(ctx, "mistral-embed").Embedding(ctx, "hello")
// ...
}
Some models have vision
capability and others can also summarize text. For example, to
generate captions for an image,
import (
"github.com/mutablelogic/go-llm"
)
func generate_image_caption(ctx context.Context, agent llm.Agent, path string) (string, error) {
f, err := os.Open(path)
if err != nil {
return "", err
}
defer f.Close()
// Describe an image
r, err := agent.Model("claude-3-5-sonnet-20241022").UserPrompt(
ctx, model.UserPrompt("Provide a short caption for this image", llm.WithAttachment(f))
)
if err != nil {
return "", err
}
// Return success
return r.Text(0), err
}
To summarize a text or PDF docment is exactly the same using an Anthropic model, but maybe with a different prompt.
Streaming is supported with all providers, but Ollama cannot be used with streaming and tools
simultaneously. You provide a callback function of signature func(llm.Completion)
which will
be called as a completion is received.
import (
"github.com/mutablelogic/go-llm"
)
func generate_completion(ctx context.Context, agent llm.Agent, prompt string) (string, error) {
r, err := agent.Model("claude-3-5-sonnet-20241022").UserPrompt(
ctx, model.UserPrompt("What is the weather in London?"),
llm.WithStream(stream_callback),
)
if err != nil {
return "", err
}
// Return success
return r.Text(0), err
}
func stream_callback(completion llm.Completion) {
// Print out the completion text on each call
fmt.Println(completion.Text(0))
}
All providers support tools, but not all models.
TODO
You can add options to sessions, or to prompts. Different providers and models support different options.
type Model interface {
// Set session-wide options
Context(...Opt) Context
// Add attachments (images, PDF's) to a user prompt for completion
UserPrompt(string, ...Opt) Context
// Create an embedding vector with embedding options
Embedding(context.Context, string, ...Opt) ([]float64, error)
}
type Context interface {
// Add single-use options when calling the model, which override
// session options. You can attach files to a user prompt.
FromUser(context.Context, string, ...Opt) error
}
The options are as follows:
Option | Ollama | Anthropic | Mistral | OpenAI | Description |
---|---|---|---|---|---|
llm.WithTemperature(float64) |
Yes | Yes | Yes | - | What sampling temperature to use, between 0.0 and 1.0. Higher values like 0.7 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. |
llm.WithTopP(float64) |
Yes | Yes | Yes | - | Nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. |
llm.WithTopK(uint64) |
Yes | Yes | No | - | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. |
llm.WithMaxTokens(uint64) |
No | Yes | Yes | - | The maximum number of tokens to generate in the response. |
llm.WithStream(func(llm.Completion)) |
Can be enabled when tools are not used | Yes | Yes | - | Stream the response to a function. |
llm.WithToolChoice(string, string, ...) |
No | Use auto , any or a function name. Only the first argument is used. |
Use auto , any , none , required or a function name. Only the first argument is used. |
- | The tool to use for the model. |
llm.WithToolKit(llm.ToolKit) |
Cannot be combined with streaming | Yes | Yes | - | The set of tools to use. |
llm.WithStopSequence(string, string, ...) |
Yes | Yes | Yes | - | Stop generation if one of these tokens is detected. |
llm.WithSystemPrompt(string) |
No | Yes | Yes | - | Set the system prompt for the model. |
llm.WithSeed(uint64) |
Yes | No | Yes | - | The seed to use for random sampling. If set, different calls will generate deterministic results. |
llm.WithFormat(string) |
Use json |
No | Use json_format or text |
- | The format of the response. For Mistral, you must also instruct the model to produce JSON yourself with a system or a user message. |
llm.WithPresencePenalty(float64) |
Yes | No | Yes | - | Determines how much the model penalizes the repetition of words or phrases. A higher presence penalty encourages the model to use a wider variety of words and phrases, making the output more diverse and creative. |
llm.WithFequencyPenalty(float64) |
Yes | No | Yes | - | Penalizes the repetition of words based on their frequency in the generated text. A higher frequency penalty discourages the model from repeating words that have already appeared frequently in the output, promoting diversity and reducing repetition. |
mistral.WithPrediction(string) |
No | No | Yes | - | Enable users to specify expected results, optimizing response times by leveraging known or predictable content. This approach is especially effective for updating text documents or code files with minimal changes, reducing latency while maintaining high-quality results. |
llm.WithSafePrompt() |
No | No | Yes | - | Whether to inject a safety prompt before all conversations. |
llm.WithNumCompletions(uint64) |
No | No | Yes | - | Number of completions to return for each request. |
llm.WithAttachment(io.Reader) |
Yes | Yes | Yes | - | Attach a file to a user prompt. It is the responsibility of the caller to close the reader. |
antropic.WithEphemeral() |
No | Yes | No | - | Attachments should be cached server-side |
antropic.WithCitations() |
No | Yes | No | - | Attachments should be used in citations |
antropic.WithUser(string) |
No | Yes | No | - | Indicate the user for the request, for debugging |
You can use the command-line tool to interact with the API. To build the tool, you can use the following command:
go install github.com/mutablelogic/go-llm/cmd/llm@latest
llm --help
The output is something like:
Usage: llm <command> [flags]
LLM agent command line interface
Flags:
-h, --help Show context-sensitive help.
--debug Enable debug output
--verbose Enable verbose output
--ollama-endpoint=STRING Ollama endpoint ($OLLAMA_URL)
--anthropic-key=STRING Anthropic API Key ($ANTHROPIC_API_KEY)
--news-key=STRING News API Key ($NEWSAPI_KEY)
Commands:
agents Return a list of agents
models Return a list of models
tools Return a list of tools
download Download a model
chat Start a chat session
Run "llm <command> --help" for more information on a command.
This module is currently in development and subject to change. Please do file feature requests and bugs here. The license is Apache 2 so feel free to redistribute. Redistributions in either source code or binary form must reproduce the copyright notice, and please link back to this repository for more information:
go-llm
https://github.com/mutablelogic/go-llm/
Copyright (c) 2025 David Thorpe, All rights reserved.