The Face mask Dataset is collected and annotated by Self-Study-Camp team members on 22 November 2021. The dataset consists of 208 images splitted into 168 train, 40 test images in XML format.
We will be using SSD-mobilenetv2 model from TensorFlow 2 Detection Model Zoo. They provide a collection of detection models pre-trained on the COCO 2017 dataset.
Model name | Speed (ms) | COCO mAP | Outputs |
---|---|---|---|
SSD MobileNet V2 FPNLite 640x640 | 39 | 28.2 | Boxes |
After training for 8000 steps:
{'Loss/classification_loss': 0.06144937,
'Loss/localization_loss': 0.017765515,
'Loss/regularization_loss': 0.12342198,
'Loss/total_loss': 0.20263687,
'learning_rate': 0.07603875}
Validation Detection Metrics:
Accumulating evaluation results...
DONE (t=0.06s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.343
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.698
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.399
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.700
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.515
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.313
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.348
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.449
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.552
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.700
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.693
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.511
TensorFlow Object Detection API Tutorial
TensorFlow 2 Detection Model Zoo