-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
196 lines (163 loc) · 5.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gymnasium as gym
import utils
from agent import PPOAgent
import numpy as np
import os
import warnings
from argparse import ArgumentParser
import pandas as pd
import os
os.makedirs("weights", exist_ok=True)
os.makedirs("metrics", exist_ok=True)
os.makedirs("environments", exist_ok=True)
warnings.simplefilter("ignore")
environments = [
"BipedalWalker-v3",
"Pendulum-v1",
"MountainCarContinuous-v0",
"Ant-v4",
"HalfCheetah-v4",
"Hopper-v4",
"Humanoid-v4",
"LunarLanderContinuous-v2",
"HumanoidStandup-v4",
"InvertedDoublePendulum-v4",
"InvertedPendulum-v4",
"Pusher-v4",
"Reacher-v4",
"Swimmer-v3",
"Walker2d-v4",
]
def run_ppo(env_name, n_games, n_epochs, horizon, batch_size, continue_training=False):
env = gym.make(env_name, render_mode="rgb_array")
save_prefix = env_name.split("/")[-1]
print(f"\nEnvironment: {env_name}")
print(f"Obs.Space: {env.observation_space.shape} Act.Space: {env.action_space}")
agent = PPOAgent(
env_name,
env.observation_space.shape,
env.action_space.shape[0],
alpha=3e-4,
n_epochs=n_epochs,
batch_size=batch_size,
)
# continue training from saved checkpoint
if continue_training:
if os.path.exists(f"weights/{save_prefix}_actor.pt"):
agent.load_models()
n_steps, n_learn, best_score = 0, 0, float("-inf")
history, metrics = [], []
max_action = env.action_space.high[0]
for i in range(n_games):
state, _ = env.reset()
state = np.array(state, dtype=np.float32).flatten()
term, trunc, score = False, False, 0
while not term and not trunc:
action, prob = agent.choose_action(state)
act = utils.action_adapter(action, max_action)
next_state, reward, term, trunc, _ = env.step(act)
next_state = np.array(next_state, dtype=np.float32).flatten()
reward = utils.clip_reward(reward)
agent.remember(state, next_state, action, prob, reward, term or trunc)
n_steps += 1
if n_steps > batch_size and n_steps % horizon == 0:
agent.learn()
n_learn += 1
score += reward
state = next_state
history.append(score)
avg_score = np.mean(history[-100:])
if avg_score > best_score:
best_score = avg_score
agent.save_models()
metrics.append(
{
"episode": i + 1,
"average_score": avg_score,
"best_score": best_score,
}
)
print(
f"[{env_name} Episode {i + 1:04}/{n_games}] Average Score = {avg_score:.2f}",
end="\r",
)
return history, metrics, best_score, agent
def save_results(env_name, history, metrics, agent):
save_prefix = env_name.split("/")[-1]
utils.plot_running_avg(history, save_prefix)
df = pd.DataFrame(metrics)
df.to_csv(f"metrics/{save_prefix}_metrics.csv", index=False)
save_best_version(env_name, agent)
def save_best_version(env_name, agent, seeds=100):
agent.load_models()
best_total_reward = float("-inf")
best_frames = None
for _ in range(seeds):
env = gym.make(env_name, render_mode="rgb_array")
state, _ = env.reset()
state = np.array(state, dtype=np.float32).flatten()
frames = []
total_reward = 0
max_action = env.action_space.high[0]
term, trunc = False, False
while not term and not trunc:
frames.append(env.render())
action, _ = agent.choose_action(state)
act = utils.action_adapter(action, max_action)
next_state, reward, term, trunc, _ = env.step(act)
next_state = np.array(next_state, dtype=np.float32).flatten()
reward = utils.clip_reward(reward)
total_reward += reward
state = next_state
if total_reward > best_total_reward:
best_total_reward = total_reward
best_frames = frames
save_prefix = env_name.split("/")[-1]
utils.save_animation(best_frames, f"environments/{save_prefix}.gif")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"-e", "--env", default=None, help="Environment name from Gymnasium"
)
parser.add_argument(
"-n",
"--n_games",
default=50000,
type=int,
help="Number of episodes (games) to run during training",
)
parser.add_argument(
"--n_epochs",
default=10,
type=int,
help="Number of epochs during learning",
)
parser.add_argument(
"-s",
"--n_steps",
default=2048,
type=int,
help="Horizon, number of steps between learning",
)
parser.add_argument(
"-b",
"--batch_size",
default=64,
type=int,
help="Batch size for learning",
)
args = parser.parse_args()
for fname in ["metrics", "environments", "weights"]:
if not os.path.exists(fname):
os.makedirs(fname)
if args.env:
history, metrics, best_score, trained_agent = run_ppo(
args.env, args.n_games, args.n_epochs, args.n_steps, args.batch_size
)
save_results(args.env, history, metrics, trained_agent)
else:
for env_name in environments:
history, metrics, best_score, trained_agent = run_ppo(
env_name, args.n_games, args.n_epochs, args.n_steps, args.batch_size
)
save_results(env_name, history, metrics, trained_agent)