A Python Flexible Modeler for Optimization Problems.
flopt is a modeling tool for optimization problems such as LP, QP, Ising, QUBO, etc. flopt provides various functions for flexible and easy modeling. Users can also solve modeled problems with several solvers to obtain optimal or good solutions.
documentation | tutorial | case studies
PyPI
pip install flopt
GitHub
git clone https://github.com/nariaki3551/flopt.git
cd flopt && python -m pip install .
- Linear Programming (LP)
- Quadratic Programming (QP)
- Ising
- Quadratic Unconstrainted Binary Programming (QUBO)
- Non-Linear problem
minimize 2*(3*a+b)*c**2 + 3 s.t a + b * c <= 3 0 <= a <= 1 1 <= b <= 2 c <= 3
- BlackBox problem
minimize simulator(a, b, c) s.t 0 <= a <= 1 1 <= b <= 2 1 <= c <= 3
- Finding the best permutation problem (including TSP)
- Satisfiability problem (including MAX-SAT)
- CBC, CVXOPT, scipy.optimize(minimize, linprog, milp), Optuna
- Random Search, 2-Opt, Swarm Intelligence Search
You can write codes like PuLP application.
from flopt import Variable, Problem
# Variables
a = Variable('a', lowBound=0, upBound=1, cat='Continuous')
b = Variable('b', lowBound=1, upBound=2, cat='Continuous')
c = Variable('c', upBound=3, cat='Continuous')
# Problem
prob = Problem()
prob += 2 * (3*a+b) * c**2 + 3 # set the objective function
prob += a + b * c <= 3 # set the constraint
# Solve
prob.solve(timelimit=0.5, msg=True) # run solver to solve the problem
# display the result, incumbent solution
print('obj value', prob.getObjectiveValue())
print('a', a.value())
print('b', b.value())
print('c', c.value())
In addition, you can represent any objective function by CustomExpression
from flopt import Variable, Problem, CustomExpression
# Variables
a = Variable('a', lowBound=0, upBound=1, cat='Integer')
b = Variable('b', lowBound=1, upBound=2, cat='Continuous')
def user_func(a, b):
from math import sin, cos
return (0.7*a + 0.3*cos(b)**2 + 0.1*sin(b))*abs(a)
custom_obj = CustomExpression(func=user_func, args=[a, b])
prob = Problem(name='CustomExpression')
prob += custom_obj
# Solve
prob.solve(timelimit=1, msg=True) # run solver to solve the problem
# display the result, incumbent solution
print('obj value', prob.getObjectiveValue())
In the case you solve TSP, Permutation Variable is useful.
from flopt import Variable, Problem, CustomExpression
N = 4 # Number of city
D = [[0,1,2,3], # Distance matrix
[3,0,2,1],
[1,2,0,3],
[2,3,1,0]]
# Variables
x = Variable('x', lowBound=0, upBound=N-1, cat='Permutation')
# Object
def tsp_dist(x):
distance = 0
for head, tail in zip(x, x[1:]+[x[0]]):
distance += D[head][tail] # D is the distance matrix
return distance
tsp_obj = CustomExpression(func=tsp_dist, args=[x])
# Problem
prob = Problem(name='TSP')
prob += tsp_obj
# Solve
prob.solve(timelimit=10, msg=True) # run solver to solve the problem
# display the result, incumbent solution
print('obj value', prob.getObjectiveValue())
print('x', x.value())