Skip to content

[ENH] Add CNeuro handling #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions fmralignbench/conf.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
ROOT_FOLDER = '/storage/store2/work/tbazeill/neuroimage'
N_JOBS = 15
ROOT_FOLDER = '/home/emdupre/scratch/cneuro'
N_JOBS = 5
44 changes: 39 additions & 5 deletions fmralignbench/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
import time
import numpy as np
import pandas as pd
import os
from os.path import join as opj
from collections import namedtuple

Expand All @@ -23,16 +22,17 @@
from fmralignbench.fastsrm import FastSRM
from fmralignbench.conf import ROOT_FOLDER, N_JOBS

mask_gm = os.path.join(ROOT_FOLDER, 'masks', 'gm_mask_3mm.nii.gz')
mask_gm = os.path.join(
ROOT_FOLDER,
'tpl-MNI152NLin2009cAsym_res-3mm_label-GM_desc-thr02_probseg.nii.gz')
mask_audio_3mm = os.path.join(
ROOT_FOLDER, 'masks', 'audio_mask_resampled_3mm.nii.gz')
language_mask_3mm = os.path.join(
ROOT_FOLDER, 'masks', 'left_language_mask_3mm.nii.gz')


WHOLEBRAIN_DATASETS = [{"decoding_task": "ibc_rsvp", "alignment_data_label": "53_tasks",
"roi_code": "fullbrain", "mask": mask_gm},
{"decoding_task": "ibc_tonotopy_cond", "alignment_data_label": "53_tasks",
WHOLEBRAIN_DATASETS = [{"decoding_task": "cneuromod",
"alignment_data_label": None,
"roi_code": "fullbrain", "mask": mask_gm}]

ROI_DATASETS = [{"decoding_task": "ibc_rsvp", "alignment_data_label": "53_tasks",
Expand Down Expand Up @@ -170,6 +170,7 @@ def align_one_target(sources_train, sources_test, target_train, target_test, met
source_align = PairwiseAlignment(
alignment_method=pairwise_method, clustering=clustering,
n_pieces=n_pieces, mask=masker, n_jobs=n_jobs)

source_align.fit(source_train, target_train)
aligned_sources_test.append(
source_align.transform(source_test))
Expand Down Expand Up @@ -295,6 +296,7 @@ def try_methods_decoding(method, subjects, train, test, pairwise_method,
fit_timings = []
overhead_timings = []
i = 0

for (train_align, train_decode, train_decode_labels,
LO_align, LO_decode, LO_decode_labels) in zip(
train.alignment, train.x, train.y,
Expand Down Expand Up @@ -464,6 +466,15 @@ def experiments_variables(task, surface="", root_dir='/'):
mask_cache = opj(root_dir, 'ibc_tonotopy_cond', 'mask_cache')
# audio_mask_3mm = opj(root_dir,"ibc/audio_mask_resampled_3mm.nii.gz")

elif task == "cneuromod":
subjects = ["sub-01", "sub-02", "sub-03", "sub-04", "sub-05", "sub-06"]
mask = opj(
root_dir,
"tpl-MNI152NLin2009cAsym_res-3mm_label-GM_desc-thr02_probseg.nii.gz")
task_dir = opj(root_dir, "cneuro_wm_5mm", "3mm")
out_dir = opj(root_dir, "cneuro_wm_5mm", "decoding_fmralignbench")
mask_cache = opj(root_dir, "cneuro_wm_5mm", "mask_cache")

else:
err_msg = ("Unrecognized decoding task. Please provide a " +
"recognized decoding task and try again.")
Expand Down Expand Up @@ -590,6 +601,29 @@ def fetch_align_decode_data(task, subjects, data_dir,
LOs_decode_labels.append([decoding_conditions[lo]])
LOs_align.append([paths_align[lo]])

elif task == "cneuromod":
life = opj(
root_dir, 'alignment_data_5mm',
'{}_task-life_run-1_space-MNI152NLin2009cAsym_desc-fwhm5_bold.nii.gz')
paths_align = np.asarray([life.format(sub)
for sub in subjects])
n_subj = np.arange(len(subjects))
leave_outs = n_subj # use LOO

for lo in leave_outs:
# training alignment data
train_align.append(
paths_align[np.isin(n_subj, (lo), invert=True)])
# training decoding data splits, labels
train_decode.append(
decoding_subjects[np.isin(n_subj, (lo), invert=True)])
train_decode_labels.append(
decoding_conditions[np.isin(n_subj, (lo), invert=True)])
# testing decoding data splits, labels
LOs_align.append([paths_align[lo]])
LOs_decode.append([decoding_subjects[lo]])
LOs_decode_labels.append([decoding_conditions[lo]])

train = DataSplit(
x=train_decode, y=train_decode_labels, alignment=train_align)
test = DataSplit(x=LOs_decode, y=LOs_decode_labels, alignment=LOs_align)
Expand Down