Skip to content

neuromorphs/tonic

Folders and files

NameName
Last commit message
Last commit date
Jan 25, 2025
Jul 17, 2024
Jan 25, 2025
Jan 25, 2025
Feb 3, 2025
Oct 14, 2021
Dec 11, 2023
Apr 24, 2023
Oct 17, 2023
Jul 31, 2019
Jun 11, 2020
Dec 11, 2023
Jul 10, 2024
Mar 3, 2022
Mar 3, 2022
Jun 10, 2020

Repository files navigation

tonic PyPI codecov Documentation Status contributors Binder DOI Discord

Tonic is a tool to facilitate the download, manipulation and loading of event-based/spike-based data. It's like PyTorch Vision but for neuromorphic data!

Documentation

You can find the full documentation on Tonic on this site.

Install

pip install tonic

or (thanks to @Tobias-Fischer)

conda install -c conda-forge tonic

For the latest pre-release on the develop branch that passed the tests:

pip install tonic --pre

This package has been tested on:

Linux
Windows

Quickstart

If you're looking for a minimal example to run, this is it!

import tonic
import tonic.transforms as transforms

sensor_size = tonic.datasets.NMNIST.sensor_size
transform = transforms.Compose(
    [
        transforms.Denoise(filter_time=10000),
        transforms.ToFrame(sensor_size=sensor_size, time_window=3000),
    ]
)

testset = tonic.datasets.NMNIST(save_to="./data", train=False, transform=transform)

from torch.utils.data import DataLoader

testloader = DataLoader(
    testset,
    batch_size=10,
    collate_fn=tonic.collation.PadTensors(batch_first=True),
)

frames, targets = next(iter(testloader))

Discussion and questions

Have a question about how something works? Ideas for improvement? Feature request? Please get in touch on the #tonic Discord channel or alternatively here on GitHub via the Discussions page!

Contributing

Please check out the contributions page for details.

Sponsoring

The development of this library is supported by

SynSense

Citation

If you find this package helpful, please consider citing it:

@software{lenz_gregor_2021_5079802,
  author       = {Lenz, Gregor and
                  Chaney, Kenneth and
                  Shrestha, Sumit Bam and
                  Oubari, Omar and
                  Picaud, Serge and
                  Zarrella, Guido},
  title        = {Tonic: event-based datasets and transformations.},
  month        = jul,
  year         = 2021,
  note         = {{Documentation available under 
                   https://tonic.readthedocs.io}},
  publisher    = {Zenodo},
  version      = {0.4.0},
  doi          = {10.5281/zenodo.5079802},
  url          = {https://doi.org/10.5281/zenodo.5079802}
}