Skip to content

Commit

Permalink
trustworthy AI
Browse files Browse the repository at this point in the history
  • Loading branch information
sergeyplis committed Nov 13, 2023
1 parent f88cbfb commit e8fa51b
Showing 1 changed file with 61 additions and 1 deletion.
62 changes: 61 additions & 1 deletion cs8850_22_calibration.html
Original file line number Diff line number Diff line change
Expand Up @@ -125,11 +125,12 @@ <h3>Schedule</h3>
</col50>
</row>
</section>

<section>
<h3>Outline for the lecture</h3>
<ul>
<li class="fragment roll-in"> Receiver Operator Characteristics
<li class="fragment roll-in"> Trustworthy AI
<li class="fragment roll-in"> Model Calibration
</ul>
</section>
Expand Down Expand Up @@ -190,6 +191,65 @@ <h2>Area Under the Curve (AUC)</h2>
</section>

</section>

<section>
<section data-background-size="cover" data-background="figures/AI_trustworthy_AI.jpeg">
<h1 style="text-shadow: 4px 4px 4px #002b36; color: #f1f1f1">Trustworthy AI</h1>
</section>

<section data-vertical-align-top >
<h3>Why trustworthy AI is interesting</h3>
<ul>
<li class="fragment roll-in"> AI is increasingly used not only for decision support, but also for automated decision making
<li class="fragment roll-in"> Trust in resulting AI decisions is vital
<li class="fragment roll-in"> How to make AI solutions <em>trustworthy</em>?
<li class="fragment roll-in"> What does it mean to be <em>trustworthy</em>?
<li class="fragment roll-in"> AI <em>trustworthiness</em> is strongly manifested in the fields of Explainable AI (XAI) and Fairness, Accountability and Transparency (FAT)
</ul>
<div class="slide-footer">
<a href="https://youtu.be/xxZOLo8wxe0">based on a 2020 tutorial by Ulf Johansson</a>
</div>
</section>

<section>
<h3>Interpretability</h3>
<ul>
<li class="fragment roll-in"> A recognized key property of trustworthy predictive models
<li class="fragment roll-in"> Interpretable models make it possible to <alert>understand</alert> individual predictions without invoking explanation frameworks/modules
<li class="fragment roll-in"> If a model is interpretable, <em>inspection</em> and <em>analysis</em> becomes straightforward
<li class="fragment roll-in"> However, the most visible approaches are building external explanation frameworks. Vigorously (including ourselves <i class="fa-solid fa-face-smile" style='color: #FA6900;'></i>)
</ul>
</section>

<section>
<h3>Algorithmic Confidence</h3>
<ul style="font-size: 34px;">
<li class="fragment roll-in"> FAT Principles<sup>footer</sup> include <alert>accuracy</alert> as a vital component of accountable algorithms
<li class="fragment roll-in"> One guiding question for accountable algorithms: "<alert>How confident are the decisions output by your system?</alert>"
<li class="fragment roll-in"> Thus, not just everything with the accuracy on top, but also ability to, at the very least, <alert>report uncertainty</alert>
<li class="fragment roll-in"> Extremely valuable to have algorithm reason about its own uncertainty and confidence in <alert>individual recommendations</alert>
</ul>
<div class="slide-footer">
<a href="https://www.fatml.org/resources/principles-for-accountable-algorithms">Principles for Accountable Algorithms and a Social Impact Statement for Algorithms</a>
</div>
</section>

<section data-vertical-align-top>
<h3>Interpretable and Accountable models</h3>
<h2>Requirements</h2>
<ul style="font-size: 34px;">
<li class="fragment roll-in"> <alert>Interpretable</alert> models
<blockquote style='width: 100%;'>
decision trees, rule sets, or glass-box layer of Usman Mahmood <i class="fa-regular fa-face-laugh-wink" style='color: #FA6900;'></i>
</blockquote>
<li class="fragment roll-in"> <alert>Well-calibrated</alert> models
<li class="fragment roll-in"> <alert>Specific</alert> to individual predictions, exhibiting different confidences
<li class="fragment roll-in"> <alert>Fixed</alert> models available for inspection and analysis
</ul>
</section>
</section>


<section>
<section>
<h2>On Calibration of Modern Neural Networks</h2>
Expand Down

0 comments on commit e8fa51b

Please sign in to comment.