This repository contains source code to train and drive a car in TORCS by itself.
TORCS-ROS, TORCS, ROS Kinetic
python2: nengo, keras, tensorflow, numpy, opencv
python3: keras, tensorflow, numpy, opencv
- start torcs:
torcs
- configure the desired track, choose
scr_server
as driver - run:
roslaunch torcs_ros_bringup torcs_ros.launch rviz:=false driver:=false
- go into the nengo_controller folder and run:
python2 controller.py
The nengo_controller
folder contains the code needed to drive the car based on all the given sensor values.
The folder src/collect_img_sensor_data
contains a ROS node to collect training data for the DNN.
The folder src/train-deep-neural-network
contians code to train a deep neural network to infer angle and car displacement from a driver's view input image.
├── final-presentation-complete
│ └── Bilder
├── nengo_controller
│ ├── data
│ │ └── processed_data
│ └── nengo_ros
├── report
│ ├── attachments
│ └── paper
└── src
├── collect_img_sensor_data
│ ├── data-aalborg-2laps-640x480
│ ├── data-alpine_1-2laps-640x480
│ ├── data-alpine_2-2laps-640x480
│ ├── data-brondehach-2laps-640x480
│ ├── data-cg_speedway_1-2laps-640x480
│ ├── data-cg_track_2-2laps-640x480
│ ├── data-cg_track_3-2laps-640x480
│ ├── data-cg_track_3-2laps-640x480-1sthood
│ ├── data-cg_track_3-2laps-640x480-3rdclose
│ ├── data-cg_track_3-2laps-640x480-3rdfar
│ ├── data-corkscrew-2laps-640x480
│ ├── data-e_road-2laps-640x480
│ ├── data-etrack_1-2laps-640x480
│ ├── data-etrack_2-2laps-640x480
│ ├── data-etrack_3-2laps-640x480
│ ├── data-etrack_4-2laps-640x480
│ ├── data-etrack_6-2laps-640x480
│ ├── data-forza-2laps-640x480
│ ├── data-olethros_road_1-2laps-640x480
│ ├── data-ruudskogen-2laps-640x480
│ ├── data-street_1-2laps-640x480
│ ├── data-wheel_1-2laps-640x480
│ ├── data-wheel_2-2laps-640x480
│ ├── launch
│ └── src
└── train-deep-neural-network