It is an unofficial temporary fork of flink-connector-clickhouse having goal to publish it to Maven Central.
In the future it should be superseded by work made under FLIP-202.
Flink SQL connector for ClickHouse database, this project Powered by ClickHouse JDBC.
Currently, the project supports Source/Sink Table
and Flink Catalog
.
Please create issues if you encounter bugs and any help for the project is greatly appreciated.
Option | Required | Default | Type | Description |
---|---|---|---|---|
url | required | none | String | The ClickHouse jdbc url in format clickhouse://<host>:<port> . |
username | optional | none | String | The 'username' and 'password' must both be specified if any of them is specified. |
password | optional | none | String | The ClickHouse password. |
database-name | optional | default | String | The ClickHouse database name. |
table-name | required | none | String | The ClickHouse table name. |
use-local | optional | false | Boolean | Directly read/write local tables in case of distributed table engine. |
sink.batch-size | optional | 1000 | Integer | The max flush size, over this will flush data. |
sink.flush-interval | optional | 1s | Duration | Over this flush interval mills, asynchronous threads will flush data. |
sink.max-retries | optional | 3 | Integer | The max retry times when writing records to the database failed. |
optional | false | Boolean | Removed from version 1.15, use use-local instead. |
|
sink.update-strategy | optional | update | String | Convert a record of type UPDATE_AFTER to update/insert statement or just discard it, available: update, insert, discard. |
sink.partition-strategy | optional | balanced | String | Partition strategy: balanced(round-robin), hash(partition key), shuffle(random). |
sink.partition-key | optional | none | String | Partition key used for hash strategy. |
sink.sharding.use-table-definition | optional | false | Boolean | Sharding strategy consistent with definition of distributed table, if set to true, the configuration of sink.partition-strategy and sink.partition-key will be overwritten. |
sink.ignore-delete | optional | true | Boolean | Whether to ignore delete statements. |
sink.parallelism | optional | none | Integer | Defines a custom parallelism for the sink. |
scan.partition.column | optional | none | String | The column name used for partitioning the input. |
scan.partition.num | optional | none | Integer | The number of partitions. |
scan.partition.lower-bound | optional | none | Long | The smallest value of the first partition. |
scan.partition.upper-bound | optional | none | Long | The largest value of the last partition. |
catalog.ignore-primary-key | optional | true | Boolean | Whether to ignore primary keys when using ClickHouseCatalog to create table. |
properties.* | optional | none | String | This can set and pass clickhouse-jdbc configurations. |
lookup.cache | optional | NONE | String | The caching strategy for this lookup table, including NONE and PARTIAL(not support FULL yet) |
lookup.partial-cache.expire-after-access | optional | none | Duration | Duration to expire an entry in the cache after accessing, over this time, the oldest rows will be expired. |
lookup.partial-cache.expire-after-write | optional | none | Duration | Duration to expire an entry in the cache after writing, over this time, the oldest rows will be expired. |
lookup.partial-cache.max-rows | optional | none | Long | The max number of rows of lookup cache, over this value, the oldest rows will be expired. |
lookup.partial-cache.caching-missing-key | optional | true | Boolean | Flag to cache missing key, true by default |
lookup.max-retries | optional | 3 | Integer | The max retry times if lookup database failed. |
Update/Delete Data Considerations:
- Distributed table don't support the update/delete statements, if you want to use the
update/delete statements, please be sure to write records to local table or set
use-local
to true. - The data is updated and deleted by the primary key, please be aware of this when using it in the partition table.
breaking
Since version 1.16, we have taken shard weight into consideration, this may affect which shard the data is distributed to.
Flink Type | ClickHouse Type |
---|---|
CHAR | String |
VARCHAR | String / IP / UUID |
STRING | String / Enum |
BOOLEAN | UInt8 |
BYTES | FixedString |
DECIMAL | Decimal / Int128 / Int256 / UInt64 / UInt128 / UInt256 |
TINYINT | Int8 |
SMALLINT | Int16 / UInt8 |
INTEGER | Int32 / UInt16 / Interval |
BIGINT | Int64 / UInt32 |
FLOAT | Float32 |
DOUBLE | Float64 |
DATE | Date |
TIME | DateTime |
TIMESTAMP | DateTime |
TIMESTAMP_LTZ | DateTime |
INTERVAL_YEAR_MONTH | Int32 |
INTERVAL_DAY_TIME | Int64 |
ARRAY | Array |
MAP | Map |
ROW | Not supported |
MULTISET | Not supported |
RAW | Not supported |
<dependency>
<groupId>name.nkonev.flink</groupId>
<artifactId>flink-sql-connector-clickhouse</artifactId>
<version>1.17.1-9</version>
</dependency>
# clone the project
git clone https://github.com/nkonev/flink-connector-clickhouse.git
# enter the project directory
cd flink-connector-clickhouse/
# display remote branches
git branch -r
# checkout the branch you need
git checkout $branch_name
# install or deploy the project to our own repository
mvn clean install -DskipTests
mvn clean deploy -DskipTests
-- register a clickhouse table `t_user` in flink sql.
CREATE TABLE t_user (
`user_id` BIGINT,
`user_type` INTEGER,
`language` STRING,
`country` STRING,
`gender` STRING,
`score` DOUBLE,
`list` ARRAY<STRING>,
`map` Map<STRING, BIGINT>,
PRIMARY KEY (`user_id`) NOT ENFORCED
) WITH (
'connector' = 'clickhouse',
'url' = 'clickhouse://{ip}:{port}',
'database-name' = 'tutorial',
'table-name' = 'users',
'sink.batch-size' = '500',
'sink.flush-interval' = '1000',
'sink.max-retries' = '3'
);
-- read data from clickhouse
SELECT user_id, user_type from t_user;
-- write data into the clickhouse table from the table `T`
INSERT INTO t_user
SELECT cast(`user_id` as BIGINT), `user_type`, `lang`, `country`, `gender`, `score`, ARRAY['CODER', 'SPORTSMAN'], CAST(MAP['BABA', cast(10 as BIGINT), 'NIO', cast(8 as BIGINT)] AS MAP<STRING, BIGINT>) FROM T;
val tEnv = TableEnvironment.create(setting)
val props = new util.HashMap[String, String]()
props.put(ClickHouseConfig.DATABASE_NAME, "default")
props.put(ClickHouseConfig.URL, "clickhouse://127.0.0.1:8123")
props.put(ClickHouseConfig.USERNAME, "username")
props.put(ClickHouseConfig.PASSWORD, "password")
props.put(ClickHouseConfig.SINK_FLUSH_INTERVAL, "30s")
val cHcatalog = new ClickHouseCatalog("clickhouse", props)
tEnv.registerCatalog("clickhouse", cHcatalog)
tEnv.useCatalog("clickhouse")
tEnv.executeSql("insert into `clickhouse`.`default`.`t_table` select...");
TableEnvironment tEnv = TableEnvironment.create(setting);
Map<String, String> props = new HashMap<>();
props.put(ClickHouseConfig.DATABASE_NAME, "default")
props.put(ClickHouseConfig.URL, "clickhouse://127.0.0.1:8123")
props.put(ClickHouseConfig.USERNAME, "username")
props.put(ClickHouseConfig.PASSWORD, "password")
props.put(ClickHouseConfig.SINK_FLUSH_INTERVAL, "30s");
Catalog cHcatalog = new ClickHouseCatalog("clickhouse", props);
tEnv.registerCatalog("clickhouse", cHcatalog);
tEnv.useCatalog("clickhouse");
tEnv.executeSql("insert into `clickhouse`.`default`.`t_table` select...");
> CREATE CATALOG clickhouse WITH (
'type' = 'clickhouse',
'url' = 'clickhouse://127.0.0.1:8123',
'username' = 'username',
'password' = 'password',
'database-name' = 'default',
'use-local' = 'false',
...
);
> USE CATALOG clickhouse;
> SELECT user_id, user_type FROM `default`.`t_user` limit 10;
> INSERT INTO `default`.`t_user` SELECT ...;
- Implement the Flink SQL Sink function.
- Support array and Map types.
- Support ClickHouseCatalog.
- Implement the Flink SQL Source function.
- Implement the Flink SQL Lookup function.