2022/01/05: Downloading links for the pre-trained models have been updated. Sorry for the wait.
Pytorch code for the cross-modal retrieval part of our ICMR 2019 paper Context-Aware Embeddings for Automatic Art Analysis. For the classification part, check this other repository.
-
Download dataset from here.
-
Clone the repository:
git clone https://github.com/noagarcia/context-art-retrieval.git
-
Install dependencies:
- Python 2.7
- pytorch (
conda install pytorch=0.4.1 cuda90 -c pytorch
) - torchvision (
conda install torchvision
) - visdom (check tutorial here)
- pandas (
conda install -c anaconda pandas
) - nltk (
conda install -c anaconda nltk
) - sklearn (
conda install scikit-learn
)
-
Download our pre-trained context-aware models obtained with the classification code and save them into
Models/
folder:
-
To train cross-modal retrieval model with MTL context embeddings run:
python main.py --mode train --model mtl --dir_dataset $semart
-
To train cross-modal retrieval model with KGM context embeddings run:
python main.py --mode train --model kgm --att $attribute --dir_dataset $semart
Where $semart
is the path to SemArt dataset and $attribute
is the classifier type (i.e. type
, school
, time
, or author
).
-
To test cross-modal retrieval model with MTL context embeddings run:
python main.py --mode test --model mtl --dir_dataset $semart
-
To test cross-modal retrieval model with KGM context embeddings run:
python main.py --mode test --model kgm --att $attribute --dir_dataset $semart --model_path $model-file
Where $semart
is the path to SemArt dataset, $attribute
is the classifier type (i.e. type
, school
, time
, or author
), and $model-file
is the path to the trained model.
You can download our pre-trained cross-modal retrieva models with context embeddings from:
Text-to-Image retrieval results on SemArt dataset:
Model | R@1 | R@5 | R@10 | MedR |
---|---|---|---|---|
CML | 0.164 | 0.384 | 0.505 | 10 |
MTL Type | 0.145 | 0.358 | 0.474 | 12 |
MTL School | 0.196 | 0.428 | 0.536 | 8 |
MTL TF | 0.171 | 0.394 | 0.525 | 9 |
MTL Author | 0.232 | 0.452 | 0.567 | 7 |
KGM Type | 0.152 | 0.367 | 0.506 | 10 |
KGM School | 0.162 | 0.371 | 0.483 | 12 |
KGM TF | 0.175 | 0.399 | 0.506 | 10 |
KGM Author | 0.247 | 0.477 | 0.581 | 6 |
@InProceedings{Garcia2017Context,
author = {Noa Garcia and Benjamin Renoust and Yuta Nakashima},
title = {Context-Aware Embeddings for Automatic Art Analysis},
booktitle = {Proceedings of the ACM International Conference on Multimedia Retrieval},
year = {2019},
}