-
Notifications
You must be signed in to change notification settings - Fork 31
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[LoweringStrategy] Use a more general method to fetch input dims and sizes #1090
Merged
Merged
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -84,6 +84,57 @@ FailureOr<std::array<uint32_t, 3>> getPackedSize(linalg::LinalgOp linalgOp, | |
return instructionSize; | ||
} | ||
|
||
struct InputDimsAndSizes { | ||
SmallVector<unsigned, 2> batchDims; | ||
SmallVector<unsigned, 2> mDims; | ||
SmallVector<unsigned, 2> nDims; | ||
SmallVector<unsigned, 2> kDims; | ||
SmallVector<int64_t, 2> batchSizes; | ||
SmallVector<int64_t, 2> mSizes; | ||
SmallVector<int64_t, 2> nSizes; | ||
SmallVector<int64_t, 2> kSizes; | ||
}; | ||
|
||
FailureOr<InputDimsAndSizes> getInputDimsAndSizes(linalg::LinalgOp linalgOp) { | ||
FailureOr<linalg::ContractionDimensions> maybeContractionDims = | ||
linalg::inferContractionDims(linalgOp); | ||
if (failed(maybeContractionDims)) { | ||
return linalgOp.emitOpError("failed to infer the contraction dimensions."); | ||
} | ||
|
||
linalg::ContractionDimensions contractionDims = *maybeContractionDims; | ||
SmallVector<unsigned, 2> batchDims = contractionDims.batch; | ||
SmallVector<unsigned, 2> mDims = contractionDims.m; | ||
SmallVector<unsigned, 2> nDims = contractionDims.n; | ||
SmallVector<unsigned, 2> kDims = contractionDims.k; | ||
|
||
SmallVector<int64_t> shapes = linalgOp.getStaticLoopRanges(); | ||
[[maybe_unused]] size_t totalNumDims = | ||
batchDims.size() + mDims.size() + nDims.size() + kDims.size(); | ||
assert(totalNumDims == shapes.size() && | ||
("the total number of dims " + std::to_string(totalNumDims) + | ||
" is not the same as the number of loops " + | ||
std::to_string(shapes.size()) + ".") | ||
.c_str()); | ||
|
||
auto getSizesAt = [&shapes](ArrayRef<unsigned> idx) { | ||
SmallVector<int64_t, 2> sizes; | ||
for (unsigned i : idx) sizes.push_back(shapes[i]); | ||
return sizes; | ||
}; | ||
|
||
InputDimsAndSizes inputDimsAndSizes; | ||
inputDimsAndSizes.batchDims = batchDims; | ||
inputDimsAndSizes.mDims = mDims; | ||
inputDimsAndSizes.nDims = nDims; | ||
inputDimsAndSizes.kDims = kDims; | ||
inputDimsAndSizes.batchSizes = getSizesAt(batchDims); | ||
inputDimsAndSizes.mSizes = getSizesAt(mDims); | ||
inputDimsAndSizes.nSizes = getSizesAt(nDims); | ||
inputDimsAndSizes.kSizes = getSizesAt(kDims); | ||
return inputDimsAndSizes; | ||
} | ||
|
||
// Container class for the tiling at level 0 (the AIE shared memory) and level 1 | ||
// (the AIE core) in the M-, N-, and K-dimensions of a matmul operation, using | ||
// the pad-pack approach to tiling a matmul. Also contains the packing sizes for | ||
|
@@ -156,25 +207,24 @@ FailureOr<ParameterSetting> ParameterSetting::create( | |
auto initType = | ||
llvm::cast<ShapedType>(linalgOp.getDpsInitOperand(0)->get().getType()); | ||
unsigned nBitsInit = initType.getElementTypeBitWidth(); | ||
ArrayRef<int64_t> initShape = initType.getShape(); | ||
|
||
auto lhsType = | ||
llvm::cast<ShapedType>(linalgOp.getDpsInputOperand(0)->get().getType()); | ||
unsigned nBitsLhs = lhsType.getElementTypeBitWidth(); | ||
ArrayRef<int64_t> lhsShape = lhsType.getShape(); | ||
|
||
auto rhsType = | ||
llvm::cast<ShapedType>(linalgOp.getDpsInputOperand(1)->get().getType()); | ||
unsigned nBitsRhs = rhsType.getElementTypeBitWidth(); | ||
|
||
// Shape of the full matmul operation. | ||
if (isa<linalg::BatchMatmulOp>(linalgOp)) { | ||
initShape = initShape.drop_front(); | ||
lhsShape = lhsShape.drop_front(); | ||
} | ||
const uint64_t M = initShape[0]; | ||
const uint64_t N = initShape[1]; | ||
const uint64_t K = lhsShape[1]; | ||
auto getTotalSize = [](ArrayRef<int64_t> sizes) { | ||
return std::accumulate(sizes.begin(), sizes.end(), 1, | ||
std::multiplies<int64_t>()); | ||
}; | ||
|
||
// Get the shape (M, N, K) of the full Matmul operation. | ||
auto maybeInputDimsAndSizes = getInputDimsAndSizes(linalgOp); | ||
yzhang93 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
if (failed(maybeInputDimsAndSizes)) return failure(); | ||
int64_t M = getTotalSize(maybeInputDimsAndSizes.value().mSizes); | ||
int64_t N = getTotalSize(maybeInputDimsAndSizes.value().nSizes); | ||
int64_t K = getTotalSize(maybeInputDimsAndSizes.value().kSizes); | ||
|
||
// If we are conservative with ensuring that tiles A, B, and C fit at the | ||
// different memory levels, we should choose the scale factor based | ||
|
@@ -390,25 +440,39 @@ static SmallVector<int64_t> setOuterPermB(bool isMatmulTransposeB, | |
static LogicalResult setRootConfigForPackPeel4LevelTilingPipeline( | ||
mlir::FunctionOpInterface entryPointFn, linalg::LinalgOp linalgOp, | ||
AMDAIEDevice targetDevice, uint32_t numRows, uint32_t numCols) { | ||
// Scale the L1 K with a factor of 2 compared with the outer dimenions M and N | ||
// to increase the L1 memory usage. | ||
// Scale the L1 K with a factor of 2 compared with the outer dimensions M and | ||
// N to increase the L1 memory usage. | ||
auto maybePackPeelTiling = ParameterSetting::create( | ||
linalgOp, /*isPackPeel=*/true, /*isObjectFifo=*/true, targetDevice, | ||
numRows, numCols, /*kPackScaleL1=*/2); | ||
if (failed(maybePackPeelTiling)) return failure(); | ||
auto packPeelTiling = maybePackPeelTiling.value(); | ||
|
||
// Get M, N, K dimension indices from the input indexing map. | ||
FailureOr<InputDimsAndSizes> maybeInputDimsAndSizes = | ||
getInputDimsAndSizes(linalgOp); | ||
if (failed(maybeInputDimsAndSizes)) return failure(); | ||
SmallVector<unsigned, 2> batchDims = maybeInputDimsAndSizes.value().batchDims; | ||
SmallVector<unsigned, 2> mDims = maybeInputDimsAndSizes.value().mDims; | ||
SmallVector<unsigned, 2> nDims = maybeInputDimsAndSizes.value().nDims; | ||
SmallVector<unsigned, 2> kDims = maybeInputDimsAndSizes.value().kDims; | ||
if (mDims.empty() || nDims.empty() || kDims.empty()) { | ||
return linalgOp.emitOpError("failed to fetch m/n/k dims."); | ||
} | ||
|
||
AMDAIEDeviceModel deviceModel = getDeviceModel(targetDevice); | ||
|
||
// ------------------------------------------------------ | ||
// --------------- Set packing config ------------------- | ||
// ------------------------------------------------------ | ||
MLIRContext *context = entryPointFn.getContext(); | ||
unsigned numLoops = linalgOp.getNumLoops(); | ||
|
||
SmallVector<int64_t> packedSizesL0 = packPeelTiling.getPackSizeL0(); | ||
if (isa<linalg::BatchMatmulOp>(linalgOp)) { | ||
packedSizesL0.insert(packedSizesL0.begin(), 0); | ||
} | ||
// Pack level => 1. | ||
SmallVector<int64_t> packedSizesL0(numLoops, 0); | ||
packedSizesL0[mDims.back()] = packPeelTiling.m0Pack; | ||
packedSizesL0[nDims.back()] = packPeelTiling.n0Pack; | ||
packedSizesL0[kDims.back()] = packPeelTiling.k0Pack; | ||
|
||
// For matmul, transpose B matrix from [K N n k] to [N K k n] | ||
// For matmul_transpose_b, we don't have to transpose the B matrix, | ||
|
@@ -440,17 +504,11 @@ static LogicalResult setRootConfigForPackPeel4LevelTilingPipeline( | |
outerPerm); | ||
|
||
// Pack level => 2. | ||
// packed size for [M, N, K, m, n, k] | ||
SmallVector<int64_t> packedSizesL1 = {0, | ||
0, | ||
0, | ||
packPeelTiling.m1Pack, | ||
packPeelTiling.n1Pack, | ||
packPeelTiling.k1Pack}; | ||
|
||
if (isa<linalg::BatchMatmulOp>(linalgOp)) { | ||
packedSizesL1.insert(packedSizesL1.begin(), 0); | ||
} | ||
// The number of loops have increased by 3 due to the first level pack. | ||
SmallVector<int64_t> packedSizesL1(numLoops + 3, 0); | ||
packedSizesL1[mDims.back() + 3] = packPeelTiling.m1Pack; | ||
packedSizesL1[nDims.back() + 3] = packPeelTiling.n1Pack; | ||
packedSizesL1[kDims.back() + 3] = packPeelTiling.k1Pack; | ||
|
||
// Transpose A matrix from [M K m k m0 k0] to [M K k m m0 k0] | ||
// Transpose C matrix from [M N m n m0 n0] to [M N n m m0 n0] | ||
|
@@ -492,18 +550,25 @@ static LogicalResult setRootConfigForPackPeel4LevelTilingPipeline( | |
bool fitsInL2 = (l2SizeA + l2SizeB + l2SizeInit) < | ||
(deviceModel.getMemTileSizeInBytes() * numCols); | ||
int64_t scaleL0 = !isBatchMatmul && fitsInL2 ? 2 : 1; | ||
SmallVector<int64_t> tileSizeLevel0 = {packPeelTiling.M0 * scaleL0, | ||
packPeelTiling.N0 * scaleL0}; | ||
SmallVector<int64_t> tileSizeLevel1 = {numRows, numCols, 0}; | ||
SmallVector<int64_t> tileSizeLevel2 = {0, 0, 1}; | ||
SmallVector<int64_t> tileSizeLevel3 = {1, 1, 0, 0, 0, 0}; | ||
|
||
SmallVector<int64_t> tileSizeLevel0(numLoops, 0); | ||
if (isa<linalg::BatchMatmulOp>(linalgOp)) { | ||
tileSizeLevel0.insert(tileSizeLevel0.begin(), 1); | ||
tileSizeLevel1.insert(tileSizeLevel1.begin(), 0); | ||
tileSizeLevel2.insert(tileSizeLevel2.begin(), 0); | ||
tileSizeLevel3.insert(tileSizeLevel3.begin(), 0); | ||
assert(!batchDims.empty() && "expected batch dims not empty"); | ||
tileSizeLevel0[batchDims[0]] = 1; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could assert that batchDims is not empty, like the others. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
} | ||
tileSizeLevel0[mDims[0]] = packPeelTiling.M0 * scaleL0; | ||
tileSizeLevel0[nDims[0]] = packPeelTiling.N0 * scaleL0; | ||
|
||
SmallVector<int64_t> tileSizeLevel1(numLoops, 0); | ||
tileSizeLevel1[mDims[0]] = numRows; | ||
tileSizeLevel1[nDims[0]] = numCols; | ||
|
||
SmallVector<int64_t> tileSizeLevel2(numLoops, 0); | ||
tileSizeLevel2[kDims[0]] = 1; | ||
|
||
SmallVector<int64_t> tileSizeLevel3(numLoops, 0); | ||
tileSizeLevel3[mDims[0]] = 1; | ||
tileSizeLevel3[nDims[0]] = 1; | ||
|
||
TileSizesListType tileSizes = {tileSizeLevel0, tileSizeLevel1, tileSizeLevel2, | ||
tileSizeLevel3}; | ||
|
@@ -527,15 +592,29 @@ static LogicalResult setRootConfigForPackPeelPipeline( | |
if (failed(maybePackPeelTiling)) return failure(); | ||
auto packPeelTiling = maybePackPeelTiling.value(); | ||
|
||
// Get M, N, K dimension indices from the input indexing map. | ||
FailureOr<InputDimsAndSizes> maybeInputDimsAndSizes = | ||
getInputDimsAndSizes(linalgOp); | ||
if (failed(maybeInputDimsAndSizes)) return failure(); | ||
SmallVector<unsigned, 2> batchDims = maybeInputDimsAndSizes.value().batchDims; | ||
SmallVector<unsigned, 2> mDims = maybeInputDimsAndSizes.value().mDims; | ||
SmallVector<unsigned, 2> nDims = maybeInputDimsAndSizes.value().nDims; | ||
SmallVector<unsigned, 2> kDims = maybeInputDimsAndSizes.value().kDims; | ||
if (mDims.empty() || nDims.empty() || kDims.empty()) { | ||
return linalgOp.emitOpError("failed to fetch m/n/k dims."); | ||
} | ||
|
||
// ------------------------------------------------------ | ||
// --------------- Set packing config ------------------- | ||
// ------------------------------------------------------ | ||
MLIRContext *context = entryPointFn.getContext(); | ||
unsigned numLoops = linalgOp.getNumLoops(); | ||
|
||
SmallVector<int64_t> packedSizesL0 = packPeelTiling.getPackSizeL0(); | ||
if (isa<linalg::BatchMatmulOp>(linalgOp)) { | ||
packedSizesL0.insert(packedSizesL0.begin(), 0); | ||
} | ||
// Pack level => 1. | ||
SmallVector<int64_t> packedSizesL0(numLoops, 0); | ||
packedSizesL0[mDims.back()] = packPeelTiling.m0Pack; | ||
packedSizesL0[nDims.back()] = packPeelTiling.n0Pack; | ||
packedSizesL0[kDims.back()] = packPeelTiling.k0Pack; | ||
|
||
// For matmul, transpose B matrix from [K N n k] to [N K k n] | ||
// For matmul_transpose_b, we don't have to transpose the B matrix, | ||
|
@@ -571,17 +650,11 @@ static LogicalResult setRootConfigForPackPeelPipeline( | |
outerPerm); | ||
|
||
// Pack level => 2. | ||
// packed size for [M, N, K, m, n, k] | ||
SmallVector<int64_t> packedSizesL1 = {0, | ||
0, | ||
0, | ||
packPeelTiling.m1Pack, | ||
packPeelTiling.n1Pack, | ||
packPeelTiling.k1Pack}; | ||
|
||
if (isa<linalg::BatchMatmulOp>(linalgOp)) { | ||
packedSizesL1.insert(packedSizesL1.begin(), 0); | ||
} | ||
// The number of loops have increased by 3 due to the first level pack. | ||
SmallVector<int64_t> packedSizesL1(numLoops + 3, 0); | ||
packedSizesL1[mDims.back() + 3] = packPeelTiling.m1Pack; | ||
packedSizesL1[nDims.back() + 3] = packPeelTiling.n1Pack; | ||
packedSizesL1[kDims.back() + 3] = packPeelTiling.k1Pack; | ||
|
||
// Transpose A matrix from [M K m k m0 k0] to [M K k m m0 k0] | ||
// Transpose C matrix from [M N m n m0 n0] to [M N n m m0 n0] | ||
|
@@ -611,15 +684,20 @@ static LogicalResult setRootConfigForPackPeelPipeline( | |
// ------------------------------------------------------ | ||
// -------------- Set lowering config ------------------- | ||
// ------------------------------------------------------ | ||
SmallVector<int64_t> tileSizeLevel0 = {packPeelTiling.M0, packPeelTiling.N0}; | ||
SmallVector<int64_t> tileSizeLevel1 = {0, 0, packPeelTiling.K0}; | ||
SmallVector<int64_t> tileSizeLevel2 = {1, 1, 0, 0, 0, 0}; | ||
|
||
SmallVector<int64_t> tileSizeLevel0(numLoops, 0); | ||
if (isa<linalg::BatchMatmulOp>(linalgOp)) { | ||
tileSizeLevel0.insert(tileSizeLevel0.begin(), 1); | ||
tileSizeLevel1.insert(tileSizeLevel1.begin(), 0); | ||
tileSizeLevel2.insert(tileSizeLevel2.begin(), 0); | ||
assert(!batchDims.empty() && "expected batch dims not empty"); | ||
tileSizeLevel0[batchDims[0]] = 1; | ||
} | ||
tileSizeLevel0[mDims[0]] = packPeelTiling.M0; | ||
tileSizeLevel0[nDims[0]] = packPeelTiling.N0; | ||
|
||
SmallVector<int64_t> tileSizeLevel1(numLoops, 0); | ||
tileSizeLevel1[kDims[0]] = 1; | ||
|
||
SmallVector<int64_t> tileSizeLevel2(numLoops, 0); | ||
tileSizeLevel2[mDims[0]] = 1; | ||
tileSizeLevel2[nDims[0]] = 1; | ||
|
||
TileSizesListType tileSizes = {tileSizeLevel0, tileSizeLevel1, | ||
tileSizeLevel2}; | ||
|
@@ -874,16 +952,6 @@ static LogicalResult setRootConfig(mlir::FunctionOpInterface entryPointFn, | |
assert(!getLoweringConfig<IREE::Codegen::LoweringConfigAttr>(contractionOp) && | ||
"expected lowering_config is not set"); | ||
auto linalgOp = cast<linalg::LinalgOp>(contractionOp.getOperation()); | ||
unsigned numLoops = linalgOp.getNumLoops(); | ||
{ | ||
SmallVector<unsigned> dims; | ||
linalgOp.getReductionDims(dims); | ||
if (dims.size() != 1 || dims[0] != numLoops - 1) { | ||
return linalgOp.emitOpError( | ||
"is expected to have exactly one reduction dim, ") | ||
<< "and that it is the innermost dim (" << numLoops - 1 << ")."; | ||
} | ||
} | ||
|
||
// TODO (nmeshram) : This needs to be moved in a separate more generalized | ||
// logic. Also, need a flag to experiment between pad based and pack based | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Personal preference: Use
SmallVector<T>
instead ofSmallVector<T, 2>
.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'd prefer to use the same type as in upstream. In addition it seems not work to use SmallVector when calling
SmallVector<unsigned> mDims = contractionDims.m;
It has error: no viable conversion from 'SmallVector<[...], 2>' to 'SmallVector<[...], (default) 12>'
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Ok, I didn't realize this is the way upstream does it, that's fine then.
FWIW you could do
SmallVector mDims {contractionDims.m.begin(), contractionDims.m.end()};