Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

webGPU resources #180

Draft
wants to merge 1 commit into
base: 12-17-refactor_buffer_storage_split_split_split
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
127 changes: 127 additions & 0 deletions src/webGPU/buffertools.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
import { isTypedArray, type TypedArray } from 'webgpu-utils';
import { BufferSet } from '../regl_rendering';
import { WebGPUBufferLocation } from '../types';
// I track locations on buffers like this.
// We keep track of both size -- the number of meaningful data bytes
// and paddedSize -- the number of bytes including 256-byte padding.

export class WebGPUBufferSet extends BufferSet<GPUBuffer, WebGPUBufferLocation> {
// Copied with alterations from deepscatter

// An abstraction creating an expandable set of buffers that can be subdivided
// to put more than one variable on the same
// block of memory. Reusing buffers this way can have performance benefits over allocating
// multiple different buffers for each small block used.

// The general purpose here is to call 'allocate_block' that releases a block of memory
// to use in creating a new array to be passed to regl.

public device: GPUDevice;
private stagingBuffer: GPUBuffer;
public usage: number;

public store: Map<string, WebGPUBufferLocation> = new Map();

/**
*
* @param regl the Regl context we're using.
* @param buffer_size The number of bytes on each strip of memory that we'll ask for.
*/

constructor(
device: GPUDevice,
buffer_size: number,
usage: number = GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST | GPUBufferUsage.COPY_SRC
) {
super(buffer_size)
this.device = device;
// Track the ends in case we want to allocate smaller items.
this.usage = usage;
this.generate_new_buffer();
this.stagingBuffer = device.createBuffer({
size: buffer_size,
usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE,
mappedAtCreation: false // saves a little trouble in the passThrough function
});
}

private async passThroughStagingBuffer(values: Uint32Array, bufferLocation: WebGPUBufferLocation) {
// WebGPU
const { buffer, offset, paddedSize } = bufferLocation;
while (this.stagingBuffer.mapState !== 'unmapped') {
// Wait in line for a millisecond.
// Would be better to hold a queue and apply more than one of these at once.
await new Promise((resolve) => setTimeout(resolve, 1));
}
await this.stagingBuffer.mapAsync(GPUMapMode.WRITE, 0, paddedSize);
new Uint32Array(this.stagingBuffer.getMappedRange(0, values.byteLength)).set(values);
this.stagingBuffer.unmap();
const commandEncoder = this.device.createCommandEncoder();
commandEncoder.copyBufferToBuffer(this.stagingBuffer, 0, buffer, offset, paddedSize);
this.device.queue.submit([commandEncoder.finish()]);
}

register(k: string, v: WebGPUBufferLocation) {
this.store.set(k, v);
}

async set(key: string, value: TypedArray) {
if (this.store.has(key)) {
throw new Error(`Key ${key} already exists in buffer set.`);
}
const size = value.byteLength;
const paddedSize = Math.ceil(size / 256) * 256;

const { buffer, offset } = this.allocate_block(paddedSize);

// If it's a typed array, we can just copy it directly.
// cast it to uint32array
const v2 = value;
const data = new Uint32Array(v2.buffer, v2.byteOffset, v2.byteLength / 4);
const description = { buffer, offset, size, paddedSize };
await this.passThroughStagingBuffer(data, description);
this.register(key, description);
}

_create_buffer() : GPUBuffer {
return this.device.createBuffer({
size: this.buffer_size,
usage: this.usage,
mappedAtCreation: false
})
}

_create_leftover_buffer() : WebGPUBufferLocation {
return {
buffer: this.buffers[0],
offset: this.pointer,
stride: 4, // meaningless here.
byte_size: this.buffer_size - this.pointer,
paddedSize: this.buffer_size - this.pointer
}
}
}


export function createSingletonBuffer(
device: GPUDevice,
data: Uint32Array | Int32Array | Float32Array | ArrayBuffer,
usage: number
): GPUBuffer {
// Creates a disposable singleton buffer.
// ReadonlyBufferSet ought to provide better performance; but
// this allows more different buffer sizes and easier destruction.
const buffer = device.createBuffer({
size: data.byteLength,
usage,
mappedAtCreation: true
});
const mappedRange = buffer.getMappedRange();
if (isTypedArray(data)) {
new Uint32Array(mappedRange).set(data as TypedArray);
} else {
new Uint32Array(mappedRange).set(new Uint32Array(data as ArrayBuffer));
}
buffer.unmap();
return buffer;
}
170 changes: 170 additions & 0 deletions src/webGPU/forests.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
import { createSingletonBuffer, WebGPUBufferSet } from "./buffertools";
import { StatefulGPU } from "./lib";

type TinyForestParams = {
nTrees: number;
depth: number;
// The number of features to consider at each split.
maxFeatures: number;
D: number;
}

const defaultTinyForestParams : TinyForestParams = {
nTrees: 128,
depth: 8,
maxFeatures: 32,
D: 768,
}

export class TinyForest extends StatefulGPU {
params: TinyForestParams;

private _bootstrapSamples?: GPUBuffer; // On the order of 100 KB
protected _forests?: GPUBuffer // On the order of 10 MB.
// private trainedThrough: number = 0;
constructor(
device: GPUDevice,
bufferSize = 1024 * 1024 * 256,
t: Partial<TinyForestParams> = {}) {
super(device, bufferSize)
this.params = {...defaultTinyForestParams, ...t}
this.initializeForestsToZero()
this.bufferSet = new WebGPUBufferSet(device, bufferSize);
}

countPipeline(): GPUComputePipeline {
const { device } = this;
// const { maxFeatures, nTrees } = this.params
// const OPTIONS = 2;
// const countBuffer = device.createBuffer({
// size: OPTIONS * maxFeatures * nTrees * 4,
// usage: GPUBufferUsage.STORAGE & GPUBufferUsage.COPY_SRC,
// mappedAtCreation: false
// });

const layout = device.createBindGroupLayout({
entries: [
{
// features buffer;
binding: 0,
visibility: GPUShaderStage.COMPUTE,
buffer: { type: 'storage' }
},
{
// dims to check array;
binding: 1,
visibility: GPUShaderStage.COMPUTE,
buffer: { type: 'storage' }
},
{
// output count buffer.
binding: 2,
visibility: GPUShaderStage.COMPUTE,
buffer: { type: 'storage' }
}
]
})

// const subsetsToCheck = this.chooseNextFeatures();
const pipelineLayout = device.createPipelineLayout({ bindGroupLayouts: [layout] });

const shaderModule = device.createShaderModule({ code: `
@group(0) @binding(0) var<storage, read> features: array<u32>;
@group(0) @binding(1) var<storage, read> dimsToCheck: array<u16>;
@group(0) @binding(2) var<storage, write> counts: array<u32>;

@compute @workgroup_size(64)
//TODOD HERE
` });
Comment on lines +76 to +78
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The shader module is missing its main function implementation after the @compute workgroup declaration. The code as written will fail to compile. Consider implementing the core compute shader logic here before merging.

Spotted by Graphite Reviewer

Is this helpful? React 👍 or 👎 to let us know.



return device.createComputePipeline({
layout: pipelineLayout,
compute: {
module: shaderModule,
entryPoint: 'main'
}
});
}

//@ts-expect-error foo
private chooseNextFeatures(n = 32) {
console.log({n})
const { maxFeatures, nTrees, D } = this.params;
const features = new Uint16Array(maxFeatures * D);
for (let i = 0; i < nTrees; i++) {
const set = new Set<number>();
while (set.size < maxFeatures) {
set.add(Math.floor(Math.random() * D));
}
const arr = new Uint16Array([...set].sort());
features.set(arr, i * maxFeatures);
}
return createSingletonBuffer(
this.device,
features,
GPUBufferUsage.STORAGE
)
}



initializeForestsToZero() {
// Each tree is a set of bits; For every possible configuration
// the first D indicating
// the desired outcome for the dimension,
// the second D indicating whether the bits in those
// positions are to be considered in checking if the tree
// fits. There are 2**depth bitmasks for each dimension--each point
// will match only one, and part of the inference task is determining which one.

const treeSizeInBytes =
2 * this.params.D * (2 ** this.params.depth) / 8;

const data = new Uint8Array(treeSizeInBytes * this.params.nTrees)
this._forests = createSingletonBuffer(
this.device,
data,
GPUBufferUsage.STORAGE
)
}


// Rather than actually bootstrap, we generate a single
// list of 100,000 numbers drawn from a poisson distribution.
// These serve as weights for draws with replacement; to
// bootstrap any given record batch, we take a sequence of
// numbers from the buffer with offset i.
get bootstrapSamples() {
if (this._bootstrapSamples) {
return this._bootstrapSamples
} else {
const arr = new Uint8Array(100000)
for (let i = 0; i < arr.length; i++) {
arr[i] = poissonRandomNumber()
}
this._bootstrapSamples = createSingletonBuffer(
this.device,
arr,
GPUBufferUsage.STORAGE
)
return this._bootstrapSamples
}
}


}


function poissonRandomNumber() : number {
let p = 1.0;
let k = 0;

do {
k++;
p *= Math.random();
} while (p > 1/Math.E);

return k - 1;
}

Loading
Loading