An Agentic Startup Intelligence System that automatically collects, enriches, analyzes, and summarizes startup ecosystem data using AI agents running in E2B sandboxes.
This system provides real-time intelligence on the startup ecosystem by:
- Collecting data from news sources, funding databases, product launches, and GitHub activity
- Enriching data with metadata, entities, sentiment, and cross-references
- Analyzing patterns and trends using LLM-powered analysis
- Summarizing insights into actionable briefings for founders and investors
- π€ Multi-Agent Architecture: Orchestrator coordinates data collection, enrichment, analysis, and summarization
- π Real-Time Intelligence: Collects data from news, funding rounds, product launches, and GitHub activity
- π§ AI-Powered Analysis: LLM-based trend detection and opportunity identification
- π Interactive Dashboard: Beautiful web UI displaying insights, trends, and opportunities
- βοΈ Cloud-Ready: Deployable to E2B sandboxes with Docker MCP Hub integration
- β Comprehensive Testing: 46/47 tests passing (98% pass rate)
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Orchestrator Agent (E2B Sandbox) β
β Manages: collect β enrich β analyze β summarize β
ββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββββββ
β
βββ Data Collector Agents (Docker)
β β’ news-scraper (TechCrunch, HackerNews, ProductHunt)
β β’ startup-api (Crunchbase, AngelList, Dealroom)
β β’ github-monitor (Trending repos, technical signals)
β
βββ Enrichment Agent
β β’ Metadata extraction
β β’ Entity recognition
β β’ Sentiment analysis
β β’ Cross-referencing
β
βββ Analysis Agent (LLM)
β β’ Trend clustering
β β’ Pattern detection
β’ β’ Opportunity extraction
β
βββ Summarizer Agent (LLM)
β’ Daily briefings
β’ Intelligence threads
β’ Structured insights
- Backend: Python 3.14+, FastAPI, SQLite
- AI/LLM: OpenAI GPT-4, Anthropic Claude
- Frontend: HTML, Tailwind CSS, Vanilla JavaScript
- Infrastructure: E2B Sandboxes, Docker, Docker Compose
- Testing: pytest (46/47 tests passing, 34% coverage)
- Python 3.14+
- Docker & Docker Compose
- LLM API Key (OpenAI or Anthropic)
-
Clone the repository
git clone <repository-url> cd startup-intelligence-agent
-
Setup backend
cd startup-intelligence-agent/backend python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt
-
Configure environment variables
cp .env.example .env # Edit .env and add your API keys: # OPENAI_API_KEY=your_key_here # or # ANTHROPIC_API_KEY=your_key_here
-
Start data collector agents
cd ../../data-collector-agents docker-compose up -d -
Start main server
cd ../../startup-intelligence-agent/backend/src python main.py -
Access the dashboard Open your browser to: http://localhost:8080/
# Run full workflow (collect β enrich β analyze β summarize)
curl -X POST "http://localhost:8080/orchestrator/run?days_back=7"
# Check workflow status
curl http://localhost:8080/orchestrator/status
# Get latest briefing
curl http://localhost:8080/briefingGET /health- Health checkGET /info- System informationGET /briefing- Get latest briefingGET /data/stats- Data statisticsPOST /orchestrator/run- Trigger workflowGET /orchestrator/status- Workflow statusGET /docs- Interactive API documentation
- β Unit Tests: 29/29 passing (100%)
- β Integration Tests: 13/13 passing (100%)
- β E2E Tests: 4/5 passing (80%)
- π Test Coverage: 34%
cd startup-intelligence-agent/backend
source venv/bin/activate
# Run all tests
pytest tests/ -v
# Run with coverage
pytest tests/ --cov=src --cov-report=html.
βββ startup-intelligence-agent/
β βββ backend/
β β βββ src/
β β β βββ orchestrator/ # Main orchestrator agent
β β β βββ enrichment/ # Data enrichment agent
β β β βββ analysis/ # LLM analysis agent
β β β βββ summarizer/ # Briefing generation agent
β β β βββ database/ # SQLite database layer
β β β βββ api/ # FastAPI server
β β β βββ llm/ # LLM client
β β βββ tests/ # Test suite
β β βββ requirements.txt
β βββ frontend/
β β βββ index.html # Dashboard UI
β βββ scripts/ # Deployment scripts
βββ data-collector-agents/
β βββ news-scraper/ # News scraping agent
β βββ startup-api/ # Startup API wrapper
β βββ github-monitor/ # GitHub monitoring agent
β βββ docker-compose.yml # Agent orchestration
βββ workflow-prompts/ # Development prompts
Create a .env file in startup-intelligence-agent/backend/:
# LLM Configuration
LLM_PROVIDER=openai # or "anthropic"
LLM_MODEL=gpt-4-turbo-preview # or "claude-3-opus-20240229"
OPENAI_API_KEY=your_key_here
# or
ANTHROPIC_API_KEY=your_key_here
# Data Collector Agents
NEWS_SCRAPER_URL=http://localhost:3001
STARTUP_API_URL=http://localhost:3002
GITHUB_MONITOR_URL=http://localhost:3003
# Server Configuration
HOST=127.0.0.1
PORT=8080
# E2B Sandbox (optional)
E2B_API_KEY=your_e2b_key
E2B_TEMPLATE=baseSee SERVER_SETUP.md for detailed setup instructions.
See E2B_INTEGRATION.md for deployment to E2B sandboxes.
cd startup-intelligence-agent/scripts
python deploy_to_e2b.py- HACKATHON_SUBMISSION.md - Project overview
- TESTING.md - Testing guide
- UI_TESTING_GUIDE.md - UI testing instructions
- E2B_INTEGRATION.md - E2B deployment
- LLM_API_SETUP.md - LLM configuration
cd startup-intelligence-agent/backend
source venv/bin/activate
pytest tests/ -v- Unit Tests: Fast, isolated component tests
- Integration Tests: Component interaction tests
- E2E Tests: Full system tests (require running services)
See tests/README.md for detailed testing documentation.
- News articles from TechCrunch, HackerNews, ProductHunt
- Funding rounds from Crunchbase, AngelList, Dealroom
- Product launches and startup events
- GitHub trending repositories and technical signals
- Trend clustering and pattern detection
- Competitor move identification
- Opportunity extraction for founders and investors
- Market gap analysis
- Real-time briefing display
- Interactive trend exploration
- Funding round tracking
- Opportunity matching
- Intelligence threads
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
See LICENSE file for details.
Built using:
- FastAPI - Modern web framework
- E2B - Secure sandboxed environments
- OpenAI & Anthropic - LLM providers
For questions or issues, please open an issue in the repository.
Status: β Production Ready | Tests: 46/47 passing (98%) | Coverage: 34%