Skip to content

oforomar/BEV-Project

Repository files navigation

Open in colab

Bird's Eye View Detection from Stereo Camera

Clone this repository

!git clone https://github.com/oforomar/BEV-Project.git --recurse-submodules
%cd BEV-Project

Dataset

KITTI datasets. The structures of the datasets are shown in below.

It's preferable to use the following command to download the dataset as we edited it to only download the testing images.

# install awscli "AWS Command Line" for python
!pip install awscli 

# Kitti download script
!chmod +x ./W-Stereo-Disp/scripts/download_kitti.sh
! ./W-Stereo-Disp/scripts/download_kitti.sh

You can use your own Indices for Inference or you can use the following command for using the first 15 images in the testing dataset for inferance

# val.txt file contain the idx of the images from the dataset, which you want to be used in Inferance.
!mv val.txt KITTI/

KITTI Object Detection Structure

KITTI
    | val.txt
    | testing
        | calib
          | 000000.txt
        | image_2
          | 000000.png
        | image_3
          | 000000.png

Install Dependencies:

!pip install -r requirements.txt

Figure

  • Downloading Checkpoint and Best Model pre-trained, to be used as inferance
  • Checkpoints should be located W-Stereo-Disp/checkpoints/
  • Steps:
    1-Create W-Stereo-Disp/checkpoints
    2-Download the files
    3-Return to main project folder
!mkdir W-Stereo-Disp/checkpoints
%cd W-Stereo-Disp/checkpoints

# To Download checkpoint.pth.tar, model_best.pth.tar files
# checkpoint.pth.tar
!gdown --id 1K110r6n0kg_j3Xq6ThicwOXpYmiBjQ77

# model_best.pth.tar
!gdown --id 10GKd_H4qpdG4PxPVQ-Cjz9pfmdn78B9o

%cd ../..

Generating depth maps

!python "W-Stereo-Disp/src/main_depth.py" -c "W-Stereo-Disp/src/configs/kitti_w1.config" \
    --bval 2 \
    --resume "W-Stereo-Disp/checkpoints/checkpoint.pth.tar" --pretrain "W-Stereo-Disp/checkpoints/model_best.pth.tar" --datapath  "KITTI/testing" \
    --data_list="KITTI/val.txt" --generate_depth_map

Visualize depth maps (optional)

import numpy as np
from matplotlib import pyplot as plt

img_array = np.load('KITTI/testing/depth_maps/000000.npy')
plt.imshow(img_array,cmap='gray')
plt.show()

depthmap_image

Pseudo Lidar V2

In this step the dataset used should be as follows:

KITTI
    | val.txt
    | testing
        | calib
          | 000000.txt
        | image_2
          | 000000.png
        | image_3
          | 000000.png
        | depth_maps
          | 000000.npy

Convert depth maps to Pseudo-LiDAR and Planes

Convert depth maps to Pseudo-Lidar Point Clouds

!python W-Stereo-Disp/src/preprocess/generate_lidar_from_depth.py --calib_dir  "KITTI/testing/calib" \
    --depth_dir "KITTI/testing/depth_maps/"  \
    --save_dir  "KITTI/testing/velodyne/"

Predict Ground Planes from Point Clouds

!python W-Stereo-Disp/src/preprocess/kitti_process_RANSAC.py --calib_dir  "KITTI/testing/calib" \
    --lidar_dir "KITTI/testing/velodyne" \
    --planes_dir  "KITTI/testing/planes"

Avod

In this step the dataset used should be as follows (extra folders is not an issue):

KITTI
    | val.txt
    | testing
        | calib
          | 000000.txt
        | image_2
          | 000000.png
        | image_3
          | 000000.png
        | planes
          | 000000.txt
        | velodyne
          | 000000.bin

Compile integral image library in wavedata

!chmod +x ./avod/scripts/install/build_integral_image_lib.bash
!sh ./avod/scripts/install/build_integral_image_lib.bash

If for any reason the above command didn't compile, remove CMakeCashe.txt in avod/wavedata/wavedata/tools/core

Avod uses Protobufs to configure model and training parameters. Before the framework can be used, the protos must be compiled (from top level avod folder):

!sh ./avod/avod/protos/run_protoc.sh

Use the following command to download the checkpoints in checkpoints directoy

# Checkpoints download
%mkdir avod/avod/data/outputs/pyramid_cars_with_aug_example/checkpoints
%cd avod/avod/data/outputs/pyramid_cars_with_aug_example/checkpoints
!gdown --id 1wuMykUDx8tcCfxpqnprmzrgUyheQV42F
!unzip avod.zip
%rm -r avod.zip
%cd ../../../../..

Run Inferance

!python avod/avod/experiments/run_inference.py --checkpoint_name='pyramid_cars_with_aug_example' \
    --data_split='val' --ckpt_indices=120 --device='1'

The output of the above command will be the detected cars in txt files saved in avod/avod/data/outputs/pyramid_cars_with_aug_example/predictions/final_predictions_and_scores/val/120000

Detection Formats

According to Avod Format in documentation final_prediction of avod, actually box_3d: (N, 7)
[x, y, z, l, w, h, ry, score,type]

-2.70278 1.18219 31.97493 1.69001 4.29071 1.59802 -1.40545 0.99985 0

KITTI: [type, truncation, occlusion, alpha(viewing angle), (x1, y1, x2, y2), (h, w, l), (x, y, z), ry, score]

Car -1 -1 -1 488.679 171.776 591.806 209.057 1.69 1.598 4.291 -2.703 1.182 31.975 -1.405 1.0

Converting from avod format to Kitti format

!python to_kitti_format.py --avod_label_path "avod/avod/data/outputs/pyramid_cars_with_aug_example/predictions/final_predictions_and_scores/val/120000" \
        --save_path KITTI/testing/label_2

Kitti Detect and Visualition

In this step the dataset used should be as follows (extra folders is not an issue):

KITTI
    | val.txt
    | testing
        | calib
          | 000000.txt
        | image_2
          | 000000.png
        | planes
          | 000000.txt
        | velodyne
          | 000000.bin
        | label_2
          | 000000.txt
          

Changing where you are

%cd kitti_object_vis/

Imports

%matplotlib inline
import matplotlib.pyplot as plt
import cv2
from kitti_object import kitti_object, show_lidar_with_depth, show_lidar_on_image, \
                         show_image_with_boxes, show_lidar_topview_with_boxes
from xvfbwrapper import Xvfb
vdisplay = Xvfb(width=1920, height=1080)
vdisplay.start()
from mayavi import mlab
mlab.init_notebook('ipy')

Detecting

dataset = kitti_object("../KITTI", "testing")
# Number of image you want to visualize its BEV
data_idx = 5
objects = dataset.get_label_objects(data_idx)
pc_velo = dataset.get_lidar(data_idx)
calib = dataset.get_calibration(data_idx)
img = dataset.get_image(data_idx)
img_height, img_width, _ = img.shape

fig_3d = mlab.figure(bgcolor=(0, 0, 0), size=(800, 450))
show_lidar_with_depth(pc_velo, objects, calib, fig_3d, True, img_width, img_height)
fig_3d

Visualzing 2D image with 3D boxes

_, img_bbox3d = show_image_with_boxes(img, objects, calib)
img_bbox3d = cv2.cvtColor(img_bbox3d, cv2.COLOR_BGR2RGB)

fig_bbox3d = plt.figure(figsize=(14, 7))
ax_bbox3d = fig_bbox3d.subplots()
ax_bbox3d.imshow(img_bbox3d)
plt.show()

Visualzing Bird's eye View

img_bev = show_lidar_topview_with_boxes(pc_velo, objects, calib)
fig_bev = plt.figure(figsize=(7, 14))
ax_bev = fig_bev.subplots()
ax_bev.imshow(img_bev)
plt.show()

Saving the output as images

import numpy as np
from PIL import Image
import os

depthimage_save_path = "../KITTI/testing/BEV_3D_images/" 
if not os.path.exists(depthimage_save_path):
    os.makedirs(depthimage_save_path)
    
im_3DBOX = Image.fromarray(img_bbox3d)
im_BEV = Image.fromarray(img_bev)
im_3DBOX.save(depthimage_save_path+"3D_BOX_"+str(data_idx)+".jpeg")
im_BEV.save(depthimage_save_path+"BEV_"+str(data_idx)+".jpeg")

3D_BOX_1018 BEV_1018

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •