Blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) is the most common method for measuring human brain activity non-invasively in-vivo. BOLD fMRI images are 4-dimensional, consisting of a time series of 3d volumes, acquired in quick succession (every 1 or 2 seconds) typically over a period of 8-15 minutes
We will work with the Multisubject - Multimodal Face Processing Dataset
available at openneuro.org.
This dataset involves presentation of images of faces to the subject while acquiring BOLD fMRI images of the subject’s brain activity. Your job is to preprocess these scans and then, in python, localize the brain area that processes faces.
- Install both AFNI and FSL software packages on a Linux or Mac OS.
- If you use Windows, please refer to NeuroDebian virtual machine from https://neuro.debian.net/
- Python 3.7.x version preferred
- Ubuntu 18.04 64-bit OS
- 16 GB RAM
- 3.7 GHZ 4 Core
- Single run dataset:
~5GB
- Whole dataset:
~300GB
Python 3.7.6 64-bit
with Miniconda3- Framework requirements are in
requirements.txt
file
- Please follow this wiki guide to install both AFNI and FSL libraries:
- http://miykael.github.io/nipype-beginner-s-guide/installation.html
Project has a couple of different workflow in it.
- Folder manipulation
- Pre-processing
- Localizing
- Visualizing
-
python3 main.py --pre-process
- Only pre-processing
-
python3 main.py --pre-process --localize
- Pre-processing after localization
-
python3 main.py --select-data patient01 patient02 --pre-process localize
- Pre-processing and localization on only specified datas
python3 main.py --use-pre ...
- Use
--use-pre
instead of `--pre-process to get avoid long process time
- Use
-
Localizing raw data
python3 main.py --localize
-
Localizing processed data
python3 main.py --use-pre --localize
- Can visualize one dataset only
python3 main.py --select-data patient01 --use-pre --visualize-corr
- Only works with processed data
python3 main.py --use-pre --localize --batch-process
- Console input:
python3 main.py --help
-h, --help
- Shows help message
-p, --pre-process
- Pre-process whole data in raw directory.
May take several hours according to the computer.
Use the
--select-data
parameter to pre-process only the desired data
-u, --use-pre
- When the flag is activated, uses pre-processed data to localize faces.
-l, --localize
- Applies localize task activation to the MRI input
--pipeline PIPELINE
- Specifies the path to the bash code that will create the pipeline, leave it as default to work normally.
-S SELECT_DATA [SELECT_DATA ...], --select-data SELECT_DATA [SELECT_DATA ...]
- Select data, otherwise all of them going to be used.
--data-folder
DATA_FOLDER
- Specifies the path to the folder containing the raw data.
--pre-data-folder
PRE_DATA_FOLDER
- Specifies the path to the folder where the processed data is located or to be saved after pre-processing.
-b, --batch_process
- Applies linear alignment and registration with correlation into T1 image.
-v, --visualize-corr
- Visualize different between processed and unprocessed data corr. Needs to be used with
--use-pre
-i INPUT_FILE, --input-file INPUT_FILE
- Specifies the input MRI image file name
-o OUTPUT_FILE, --output-file OUTPUT_FILE
- Specifies the output MRI image file name
-e EVENT_FILE, --event-file EVENT_FILE
- Specifies the events file name
-H HRF_FILE, --hrf-file HRF_FILE
- Specifies the HRF file name
-t TEMPLATE, --template TEMPLATE
- Specifies the path to template T1 space, leave it as default to work normally.