Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
xin-li-67 committed Jul 1, 2023
1 parent c40a2d4 commit 37a943f
Show file tree
Hide file tree
Showing 9 changed files with 744 additions and 0 deletions.
31 changes: 31 additions & 0 deletions projects/uniformer/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# Pose Estion with UniFormer

This project implements a topdown heatmap based human pose estimator, utilizing the approach outlined in **UniFormer: Unifying Convolution and Self-attention for Visual Recognition** (TPAMI 2023) and **UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning** (ICLR 2022).

## Usage

## Citation

If this project benefits your work, please kindly consider citing the original papers:

```bibtex
@misc{li2022uniformer,
title={UniFormer: Unifying Convolution and Self-attention for Visual Recognition},
author={Kunchang Li and Yali Wang and Junhao Zhang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
year={2022},
eprint={2201.09450},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

```bibtex
@misc{li2022uniformer,
title={UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning},
author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
year={2022},
eprint={2201.04676},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
_base_ = ['mmpose::_base_/default_runtime.py']

custom_imports = dict(imports='projects.uniformer.models')

# runtime
train_cfg = dict(max_epochs=210, val_interval=10)

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=5e-4,
))

# learning policy
param_scheduler = [
dict(
type='LinearLR', begin=0, end=500, start_factor=0.001,
by_epoch=False), # warm-up
dict(
type='MultiStepLR',
begin=0,
end=210,
milestones=[170, 200],
gamma=0.1,
by_epoch=True)
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=256)

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater', interval=5))

# codec settings
codec = dict(
type='MSRAHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2)

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='Uniformer',
# pretrained='/path/to/hrt_small.pth', # Set the path to pretrained backbone here
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
type='Uniformer',
embed_dim=[64, 128, 320, 512],
layers=[5, 8, 20, 7],
head_dim=64,
drop_path_rate=0.4,
use_checkpoint=False,
windows=False,
hybrid=False,
init_cfg=dict(type='Pretrained', checkpoint='')),
head=dict(
type='TopdownSimpleHead',
in_channels=512,
out_channels=17,
norm_cfg=norm_cfg,
extra=dict(final_conv_kernel=1, ),
loss=dict(type='JointMSELoss', use_target_weight=True),
decoder=codec),
test_cfg=dict(
flip_test=True,
flip_mode='heatmap',
shift_heatmap=True,
))

# base dataset settings
dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = 'data/coco/'

# pipelines
train_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]

val_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
batch_size=128,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline,
))
val_dataloader = dict(
batch_size=256,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_val2017.json',
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=val_pipeline,
))
test_dataloader = val_dataloader

# evaluators
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/person_keypoints_val2017.json')
test_evaluator = val_evaluator
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
_base_ = ['./td-hm_uniformer-b-8xb32-210e_coco-256x192.py']

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=2e-3,
))

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))

# codec settings
codec = dict(
type='MSRAHeatmap', input_size=(288, 384), heatmap_size=(72, 96), sigma=3)

model = dict(
# pretrained='/path/to/hrt_small.pth', # Set the path to pretrained backbone here
backbone=dict(drop_path_rate=0.4),
test_cfg=dict())

train_dataloader = dict(batch_size=32)
val_dataloader = dict(batch_size=256)
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
_base_ = ['./td-hm_uniformer-b-8xb32-210e_coco-256x192.py']

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater', interval=10))

# codec settings
codec = dict(
type='MSRAHeatmap', input_size=(320, 488), heatmap_size=(80, 112), sigma=3)

model = dict(
# pretrained='/path/to/hrt_small.pth', # Set the path to pretrained backbone here
backbone=dict(drop_path_rate=0.55),
test_cfg=dict())

train_dataloader = dict(batch_size=32)
val_dataloader = dict(batch_size=256)
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
_base_ = ['./_base_/td-hm_uniformer-b-8xb32-210e_coco-256x192']

model = dict(
# pretrained='/path/to/hrt_small.pth', # Set the path to pretrained backbone here
backbone=dict(
layers=[3, 4, 8, 3],
drop_path_rate=0.2
))
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
_base_ = ['./_basae_/td-hm_uniformer-b-8xb32-210e_coco-384x288.py']

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater', interval=5))

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=2e-3,
))

# codec settings
codec = dict(
type='MSRAHeatmap', input_size=(288, 384), heatmap_size=(72, 96), sigma=3)

model = dict(
# pretrained='/path/to/hrt_small.pth', # Set the path to pretrained backbone here
backbone=dict(
layers=[3, 4, 8, 3],
drop_path_rate=0.2),
test_cfg=dict())

train_dataloader = dict(batch_size=32)
val_dataloader = dict(batch_size=256)
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
_base_ = ['./_base_/td-hm_uniformer-b-8xb32-210e_coco-448x320.py']

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater', interval=5))

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=1.0e-3,
))

# codec settings
codec = dict(
type='MSRAHeatmap', input_size=(320, 488), heatmap_size=(80, 112), sigma=3)

model = dict(
# pretrained='/path/to/hrt_small.pth', # Set the path to pretrained backbone here
backbone=dict(
layers=[3, 4, 8, 3],
drop_path_rate=0.2),
test_cfg=dict())

train_dataloader = dict(batch_size=32)
val_dataloader = dict(batch_size=256)
3 changes: 3 additions & 0 deletions projects/uniformer/models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .uniformer import * # noqa

__all__ = ['Uniformer']
Loading

0 comments on commit 37a943f

Please sign in to comment.