-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Support Simplebaseline3D (#2500)
- Loading branch information
Showing
18 changed files
with
315 additions
and
48 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
# Single-view 3D Human Body Pose Estimation | ||
|
||
## Video-based Single-view 3D Human Body Pose Estimation | ||
|
||
Video-based 3D pose estimation is the detection and analysis of X, Y, Z coordinates of human body joints from a sequence of RGB images. | ||
|
||
For single-person 3D pose estimation from a monocular camera, existing works can be classified into three categories: | ||
|
||
(1) from 2D poses to 3D poses (2D-to-3D pose lifting) | ||
|
||
(2) jointly learning 2D and 3D poses, and | ||
|
||
(3) directly regressing 3D poses from images. | ||
|
||
### Results and Models | ||
|
||
#### Human3.6m Dataset | ||
|
||
| Arch | Receptive Field | MPJPE | P-MPJPE | N-MPJPE | ckpt | log | | ||
|
||
| :------------------------------------------------------ | :-------------: | :---: | :-----: | :-----: | :------------------------------------------------------: | :-----------------------------------------------------: | | ||
|
||
| [VideoPose3D-supervised](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_videopose3d-27frm-supv_8xb128-80e_h36m.py) | 27 | 40.1 | 30.1 | / | [ckpt](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_27frames_fullconv_supervised-fe8fbba9_20210527.pth) | [log](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_27frames_fullconv_supervised_20210527.log.json) | | ||
|
||
| [VideoPose3D-supervised](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_videopose3d-81frm-supv_8xb128-80e_h36m.py) | 81 | 39.1 | 29.3 | / | [ckpt](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_81frames_fullconv_supervised-1f2d1104_20210527.pth) | [log](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_81frames_fullconv_supervised_20210527.log.json) | | ||
|
||
| [VideoPose3D-supervised](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_videopose3d-243frm-supv_8xb128-80e_h36m.py) | 243 | | | / | [ckpt](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_243frames_fullconv_supervised-880bea25_20210527.pth) | [log](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_243frames_fullconv_supervised_20210527.log.json) | | ||
|
||
| [VideoPose3D-supervised-CPN](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_videopose3d-1frm-supv-cpn-ft_8xb128-80e_h36m.py) | 1 | 53.0 | 41.3 | / | [ckpt](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_1frame_fullconv_supervised_cpn_ft-5c3afaed_20210527.pth) | [log](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_1frame_fullconv_supervised_cpn_ft_20210527.log.json) | | ||
|
||
| [VideoPose3D-supervised-CPN](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_videopose3d-243frm-supv-cpn-ft_8xb128-200e_h36m.py) | 243 | | | / | [ckpt](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth) | [log](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_243frames_fullconv_supervised_cpn_ft_20210527.log.json) | | ||
|
||
| [VideoPose3D-semi-supervised](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_videopose3d-27frm-semi-supv_8xb64-200e_h36m.py) | 27 | 57.2 | 42.4 | 54.2 | [ckpt](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_27frames_fullconv_semi-supervised-54aef83b_20210527.pth) | [log](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_27frames_fullconv_semi-supervised_20210527.log.json) | | ||
|
||
| [VideoPose3D-semi-supervised-CPN](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_videopose3d-27frm-semi-supv-cpn-ft_8xb64-200e_h36m.py) | 27 | 67.3 | 50.4 | 63.6 | [ckpt](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_27frames_fullconv_semi-supervised_cpn_ft-71be9cde_20210527.pth) | [log](https://download.openmmlab.com/mmpose/body3d/videopose/videopose_h36m_27frames_fullconv_semi-supervised_cpn_ft_20210527.log.json) | | ||
|
||
## Image-based Single-view 3D Human Body Pose Estimation | ||
|
||
3D pose estimation is the detection and analysis of X, Y, Z coordinates of human body joints from an RGB image. | ||
For single-person 3D pose estimation from a monocular camera, existing works can be classified into three categories: | ||
(1) from 2D poses to 3D poses (2D-to-3D pose lifting) | ||
(2) jointly learning 2D and 3D poses, and | ||
(3) directly regressing 3D poses from images. | ||
|
||
### Results and Models | ||
|
||
#### Human3.6m Dataset | ||
|
||
| Arch | MPJPE | P-MPJPE | N-MPJPE | ckpt | log | | ||
| :------------------------------------------------------ | :-------------: | :---: | :-----: | :-----: | :------------------------------------------------------: | :-----------------------------------------------------: | | ||
| [SimpleBaseline3D-tcn](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_simplebaseline3d_8xb64-200e_h36m.py) | 43.4 | 34.3 | /|[ckpt](https://download.openmmlab.com/mmpose/body3d/simple_baseline/simple3Dbaseline_h36m-f0ad73a4_20210419.pth) | [log](https://download.openmmlab.com/mmpose/body3d/simple_baseline/20210415_065056.log.json) | |
168 changes: 168 additions & 0 deletions
168
configs/body_3d_keypoint/pose_lift/h36m/pose-lift_simplebaseline3d_8xb64-200e_h36m.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
_base_ = ['../../../_base_/default_runtime.py'] | ||
|
||
vis_backends = [ | ||
dict(type='LocalVisBackend'), | ||
] | ||
visualizer = dict( | ||
type='Pose3dLocalVisualizer', vis_backends=vis_backends, name='visualizer') | ||
|
||
# runtime | ||
train_cfg = dict(max_epochs=200, val_interval=10) | ||
|
||
# optimizer | ||
optim_wrapper = dict(optimizer=dict(type='Adam', lr=1e-3)) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict(type='StepLR', step_size=100000, gamma=0.96, end=80, by_epoch=False) | ||
] | ||
|
||
auto_scale_lr = dict(base_batch_size=512) | ||
|
||
# hooks | ||
default_hooks = dict( | ||
checkpoint=dict( | ||
type='CheckpointHook', | ||
save_best='MPJPE', | ||
rule='less', | ||
max_keep_ckpts=1)) | ||
|
||
# codec settings | ||
# 3D keypoint normalization parameters | ||
# From file: '{data_root}/annotation_body3d/fps50/joint3d_rel_stats.pkl' | ||
target_mean = [[-2.55652589e-04, -7.11960570e-03, -9.81433052e-04], | ||
[-5.65463051e-03, 3.19636009e-01, 7.19329269e-02], | ||
[-1.01705840e-02, 6.91147892e-01, 1.55352986e-01], | ||
[2.55651315e-04, 7.11954606e-03, 9.81423866e-04], | ||
[-5.09729780e-03, 3.27040413e-01, 7.22258095e-02], | ||
[-9.99656606e-03, 7.08277383e-01, 1.58016408e-01], | ||
[2.90583676e-03, -2.11363307e-01, -4.74210915e-02], | ||
[5.67537804e-03, -4.35088906e-01, -9.76974016e-02], | ||
[5.93884964e-03, -4.91891970e-01, -1.10666618e-01], | ||
[7.37352083e-03, -5.83948619e-01, -1.31171400e-01], | ||
[5.41920653e-03, -3.83931702e-01, -8.68145417e-02], | ||
[2.95964662e-03, -1.87567488e-01, -4.34536934e-02], | ||
[1.26585822e-03, -1.20170579e-01, -2.82526049e-02], | ||
[4.67186639e-03, -3.83644089e-01, -8.55125784e-02], | ||
[1.67648571e-03, -1.97007177e-01, -4.31368364e-02], | ||
[8.70569015e-04, -1.68664569e-01, -3.73902498e-02]], | ||
target_std = [[0.11072244, 0.02238818, 0.07246294], | ||
[0.15856311, 0.18933832, 0.20880479], | ||
[0.19179935, 0.24320062, 0.24756193], | ||
[0.11072181, 0.02238805, 0.07246253], | ||
[0.15880454, 0.19977188, 0.2147063], | ||
[0.18001944, 0.25052739, 0.24853247], | ||
[0.05210694, 0.05211406, 0.06908241], | ||
[0.09515367, 0.10133032, 0.12899733], | ||
[0.11742458, 0.12648469, 0.16465091], | ||
[0.12360297, 0.13085539, 0.16433336], | ||
[0.14602232, 0.09707956, 0.13952731], | ||
[0.24347532, 0.12982249, 0.20230181], | ||
[0.2446877, 0.21501816, 0.23938235], | ||
[0.13876084, 0.1008926, 0.1424411], | ||
[0.23687529, 0.14491219, 0.20980829], | ||
[0.24400695, 0.23975028, 0.25520584]] | ||
# 2D keypoint normalization parameters | ||
# From file: '{data_root}/annotation_body3d/fps50/joint2d_stats.pkl' | ||
keypoints_mean = [[532.08351635, 419.74137558], [531.80953144, 418.2607141], | ||
[530.68456967, 493.54259285], [529.36968722, 575.96448516], | ||
[532.29767646, 421.28483336], [531.93946631, 494.72186795], | ||
[529.71984447, 578.96110365], [532.93699382, 370.65225054], | ||
[534.1101856, 317.90342311], [534.55416813, 304.24143901], | ||
[534.86955004, 282.31030885], [534.11308566, 330.11296796], | ||
[533.53637525, 376.2742511], [533.49380107, 391.72324565], | ||
[533.52579142, 330.09494668], [532.50804964, 374.190479], | ||
[532.72786934, 380.61615716]], | ||
keypoints_std = [[107.73640054, 63.35908715], [119.00836213, 64.1215443], | ||
[119.12412107, 50.53806215], [120.61688045, 56.38444891], | ||
[101.95735275, 62.89636486], [106.24832897, 48.41178119], | ||
[108.46734966, 54.58177071], [109.07369806, 68.70443672], | ||
[111.20130351, 74.87287863], [111.63203838, 77.80542514], | ||
[113.22330788, 79.90670556], [105.7145833, 73.27049436], | ||
[107.05804267, 73.93175781], [107.97449418, 83.30391802], | ||
[121.60675105, 74.25691526], [134.34378973, 77.48125087], | ||
[131.79990652, 89.86721124]] | ||
codec = dict( | ||
type='ImagePoseLifting', | ||
num_keypoints=17, | ||
root_index=0, | ||
remove_root=True, | ||
target_mean=target_mean, | ||
target_std=target_std, | ||
keypoints_mean=keypoints_mean, | ||
keypoints_std=keypoints_std) | ||
|
||
# model settings | ||
model = dict( | ||
type='PoseLifter', | ||
backbone=dict( | ||
type='TCN', | ||
in_channels=2 * 17, | ||
stem_channels=1024, | ||
num_blocks=2, | ||
kernel_sizes=(1, 1, 1), | ||
dropout=0.5, | ||
), | ||
head=dict( | ||
type='TemporalRegressionHead', | ||
in_channels=1024, | ||
num_joints=16, | ||
loss=dict(type='MSELoss'), | ||
decoder=codec, | ||
)) | ||
|
||
# base dataset settings | ||
dataset_type = 'Human36mDataset' | ||
data_root = 'data/h36m/' | ||
|
||
# pipelines | ||
train_pipeline = [ | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict( | ||
type='PackPoseInputs', | ||
meta_keys=('id', 'category_id', 'target_img_path', 'flip_indices', | ||
'target_root', 'target_root_index', 'target_mean', | ||
'target_std')) | ||
] | ||
val_pipeline = train_pipeline | ||
|
||
# data loaders | ||
train_dataloader = dict( | ||
batch_size=64, | ||
num_workers=2, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file='annotation_body3d/fps50/h36m_train.npz', | ||
seq_len=1, | ||
causal=True, | ||
keypoint_2d_src='gt', | ||
data_root=data_root, | ||
data_prefix=dict(img='images/'), | ||
pipeline=train_pipeline, | ||
)) | ||
val_dataloader = dict( | ||
batch_size=64, | ||
num_workers=2, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
ann_file='annotation_body3d/fps50/h36m_test.npz', | ||
seq_len=1, | ||
causal=True, | ||
keypoint_2d_src='gt', | ||
data_root=data_root, | ||
data_prefix=dict(img='images/'), | ||
pipeline=train_pipeline, | ||
)) | ||
test_dataloader = val_dataloader | ||
|
||
# evaluators | ||
val_evaluator = [ | ||
dict(type='MPJPE', mode='mpjpe'), | ||
dict(type='MPJPE', mode='p-mpjpe') | ||
] | ||
test_evaluator = val_evaluator |
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
44 changes: 44 additions & 0 deletions
44
configs/body_3d_keypoint/pose_lift/h36m/simplebaseline3d_h36m.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
<!-- [BACKBONE] --> | ||
|
||
<details> | ||
<summary align="right"><a href="http://openaccess.thecvf.com/content_iccv_2017/html/Martinez_A_Simple_yet_ICCV_2017_paper.html">SimpleBaseline3D (ICCV'2017)</a></summary> | ||
|
||
```bibtex | ||
@inproceedings{martinez_2017_3dbaseline, | ||
title={A simple yet effective baseline for 3d human pose estimation}, | ||
author={Martinez, Julieta and Hossain, Rayat and Romero, Javier and Little, James J.}, | ||
booktitle={ICCV}, | ||
year={2017} | ||
} | ||
``` | ||
|
||
</details> | ||
|
||
<!-- [DATASET] --> | ||
|
||
<details> | ||
<summary align="right"><a href="https://ieeexplore.ieee.org/abstract/document/6682899/">Human3.6M (TPAMI'2014)</a></summary> | ||
|
||
```bibtex | ||
@article{h36m_pami, | ||
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, Cristian}, | ||
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments}, | ||
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, | ||
publisher = {IEEE Computer Society}, | ||
volume = {36}, | ||
number = {7}, | ||
pages = {1325-1339}, | ||
month = {jul}, | ||
year = {2014} | ||
} | ||
``` | ||
|
||
</details> | ||
|
||
Results on Human3.6M dataset with ground truth 2D detections | ||
|
||
| Arch | MPJPE | P-MPJPE | ckpt | log | | ||
| :-------------------------------------------------------------- | :---: | :-----: | :-------------------------------------------------------------: | :------------------------------------------------------------: | | ||
| [SimpleBaseline3D-tcn<sup>1</sup>](/configs/body_3d_keypoint/pose_lift/h36m/pose-lift_simplebaseline3d_8xb64-200e_h36m.py) | 43.4 | 34.3 | [ckpt](https://download.openmmlab.com/mmpose/body3d/simple_baseline/simple3Dbaseline_h36m-f0ad73a4_20210419.pth) | [log](https://download.openmmlab.com/mmpose/body3d/simple_baseline/20210415_065056.log.json) | | ||
|
||
<sup>1</sup> Differing from the original paper, we didn't apply the `max-norm constraint` because we found this led to a better convergence and performance. |
21 changes: 21 additions & 0 deletions
21
configs/body_3d_keypoint/pose_lift/h36m/simplebaseline3d_h36m.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Collections: | ||
- Name: SimpleBaseline3D | ||
Paper: | ||
Title: A simple yet effective baseline for 3d human pose estimation | ||
URL: http://openaccess.thecvf.com/content_iccv_2017/html/Martinez_A_Simple_yet_ICCV_2017_paper.html | ||
README: https://github.com/open-mmlab/mmpose/blob/main/docs/en/papers/algorithms/simplebaseline3d.md | ||
Models: | ||
- Config: configs/body_3d_keypoint/pose_lift/h36m/pose-lift_simplebaseline3d_8xb64-200e_h36m.py | ||
In Collection: SimpleBaseline3D | ||
Metadata: | ||
Architecture: &id001 | ||
- SimpleBaseline3D | ||
Training Data: Human3.6M | ||
Name: pose-lift_simplebaseline3d_8xb64-200e_h36m | ||
Results: | ||
- Dataset: Human3.6M | ||
Metrics: | ||
MPJPE: 43.4 | ||
P-MPJPE: 34.3 | ||
Task: Body 3D Keypoint | ||
Weights: https://download.openmmlab.com/mmpose/body3d/simple_baseline/simple3Dbaseline_h36m-f0ad73a4_20210419.pth |
Oops, something went wrong.