Skip to content

openchlai/ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

🧠 AI-Powered Voice Processing & Case Prediction

AI Service CI/CD

OpenCHS AI Service is an advanced AI-driven solution for voice processing and case prediction.
It enables automated transcription, translation, and case classification, enhancing efficiency in omnichannel call management and case management systems.


🌍 Overview

This service is part of the OpenCHS (Open Child Helpline System) ecosystem β€” an open-source Digital Public Good developed and maintained by BITZ IT Consulting Ltd in collaboration with UNICEF and government partners across Eastern and Southern Africa.


✨ Features

  • πŸŽ™ Voice Recognition: Converts speech to text using AI-powered speech-to-text models (Whisper, wav2vec2, or similar).
  • 🌐 Translation: Translates transcribed text into English or other supported languages to assist multilingual service delivery.
  • 🧠 NLP-Based Case Prediction: Classifies and prioritizes cases using Natural Language Processing (NLP) for faster triage.
  • βš™οΈ Workflow Automation: Uses Celery and task orchestration for scalable background processing.
  • πŸ—„ Data Storage & Visualization: Saves processed data in MinIO/S3 and provides structured outputs for analytics and dashboards.

πŸ—‚ Repository Structure

1. Core Components

πŸ“ data_pipeline/

Handles the complete data processing workflow:

  • ingestion/ β€” Fetches and prepares raw audio data.
  • transcription/ β€” Converts speech to text.
  • translation/ β€” Translates non-English text.
  • nlp/ β€” Applies NLP models for classification.
  • orchestration/ β€” Coordinates pipeline tasks using Celery.
  • storage/ β€” Manages MinIO/S3 storage.

πŸ“ models/

Houses AI models used in the processing pipeline:

  • voice_recognition/ β€” Speech-to-text models.
  • translation/ β€” AI translation models.
  • case_prediction/ β€” NLP classification models.

πŸ“ backend/

Backend APIs and orchestration:

  • api/ β€” RESTful endpoints for model access.
  • authentication/ β€” Handles user access and tokens.
  • logging/ β€” Tracks events and errors.

πŸ“ frontend/

Front-end dashboards for visualization and case management.

πŸ“ infrastructure/

Deployment and CI/CD configurations:

  • docker/ β€” Container setup files.
  • k8s/ β€” Kubernetes manifests.
  • ci_cd/ β€” CI/CD pipeline configurations.

πŸ“˜ Documentation

Document Description
PROJECT_CHARTER.md Project objectives and scope.
DATA_PIPELINE.md Data processing and workflow overview.
ARCHITECTURE.md Technical architecture of the system.
SECURITY.md Security best practices and data protection measures.
GOVERNANCE.md Project governance and roles.
TESTING_STRATEGY.md Approach for testing AI models and APIs.
DEPLOYMENT_GUIDE.md Deployment setup and environment configuration.
ROADMAP.md Upcoming features and development milestones.

⚑ Getting Started

Prerequisites

Ensure you have the following installed:

  • Python 3.11+
  • Node.js 18+
  • Docker & Docker Compose
  • Redis & Celery (for asynchronous orchestration)
  • MinIO or compatible S3 object storage

Installation

# Clone the repository
git clone https://github.com/openchlai/ai.git
cd ai

# Create virtual environment
python3 -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

About

This Repository takes care of all AI requirement

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

 
 
 

Contributors 17