Skip to content

Commit

Permalink
chore: shorten proof further
Browse files Browse the repository at this point in the history
  • Loading branch information
tobiasgrosser committed Aug 12, 2024
1 parent 92271ae commit 01a2342
Showing 1 changed file with 2 additions and 4 deletions.
6 changes: 2 additions & 4 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -860,8 +860,7 @@ theorem sshiftRight_eq' (x : BitVec w) : x.sshiftRight' y = x.sshiftRight y.toNa
/-! ### udiv -/

theorem udiv_eq {x y : BitVec n} : x.udiv y = BitVec.ofNat n (x.toNat / y.toNat) := by
have h : x.toNat / y.toNat < 2 ^ n := by
exact Nat.lt_of_le_of_lt (Nat.div_le_self ..) (by omega)
have h : x.toNat / y.toNat < 2 ^ n := Nat.lt_of_le_of_lt (Nat.div_le_self ..) (by omega)
simp [udiv, bv_toNat, h, Nat.mod_eq_of_lt]

@[simp, bv_toNat]
Expand All @@ -876,8 +875,7 @@ theorem toNat_udiv {x y : BitVec n} : (x.udiv y).toNat = x.toNat / y.toNat := by

theorem umod_eq {x y : BitVec n} :
x.umod y = BitVec.ofNat n (x.toNat % y.toNat) := by
have h : x.toNat % y.toNat < 2 ^ n := by
apply Nat.lt_of_le_of_lt (Nat.mod_le _ _) x.isLt
have h : x.toNat % y.toNat < 2 ^ n := Nat.lt_of_le_of_lt (Nat.mod_le _ _) x.isLt
simp [umod, bv_toNat, Nat.mod_eq_of_lt h]

@[simp, bv_toNat]
Expand Down

0 comments on commit 01a2342

Please sign in to comment.