Skip to content

Commit

Permalink
feat: BitVec.getElem_[sub|neg|sshiftRight'|abs] (leanprover#6126)
Browse files Browse the repository at this point in the history
This PR adds lemmas for extracting a given bit of a `BitVec` obtained
via `sub`/`neg`/`sshiftRight'`/`abs`.

---------

Co-authored-by: Kim Morrison <scott@tqft.net>
  • Loading branch information
tobiasgrosser and kim-em authored Nov 21, 2024
1 parent 72e952e commit 459c6e2
Show file tree
Hide file tree
Showing 2 changed files with 19 additions and 1 deletion.
8 changes: 8 additions & 0 deletions src/Init/Data/BitVec/Bitblast.lean
Original file line number Diff line number Diff line change
Expand Up @@ -346,6 +346,10 @@ theorem getMsbD_sub {i : Nat} {i_lt : i < w} {x y : BitVec w} :
· rfl
· omega

theorem getElem_sub {i : Nat} {x y : BitVec w} (h : i < w) :
(x - y)[i] = (x[i] ^^ ((~~~y + 1#w)[i] ^^ carry i x (~~~y + 1#w) false)) := by
simp [← getLsbD_eq_getElem, getLsbD_sub, h]

theorem msb_sub {x y: BitVec w} :
(x - y).msb
= (x.msb ^^ ((~~~y + 1#w).msb ^^ carry (w - 1 - 0) x (~~~y + 1#w) false)) := by
Expand Down Expand Up @@ -410,6 +414,10 @@ theorem getLsbD_neg {i : Nat} {x : BitVec w} :
· have h_ge : w ≤ i := by omega
simp [getLsbD_ge _ _ h_ge, h_ge, hi]

theorem getElem_neg {i : Nat} {x : BitVec w} (h : i < w) :
(-x)[i] = (x[i] ^^ decide (∃ j < i, x.getLsbD j = true)) := by
simp [← getLsbD_eq_getElem, getLsbD_neg, h]

theorem getMsbD_neg {i : Nat} {x : BitVec w} :
getMsbD (-x) i =
(getMsbD x i ^^ decide (∃ j < w, i < j ∧ getMsbD x j = true)) := by
Expand Down
12 changes: 11 additions & 1 deletion src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1480,6 +1480,12 @@ theorem getLsbD_sshiftRight' {x y: BitVec w} {i : Nat} :
(!decide (w ≤ i) && if y.toNat + i < w then x.getLsbD (y.toNat + i) else x.msb) := by
simp only [BitVec.sshiftRight', BitVec.getLsbD_sshiftRight]

@[simp]
theorem getElem_sshiftRight' {x y : BitVec w} {i : Nat} (h : i < w) :
(x.sshiftRight' y)[i] =
(!decide (w ≤ i) && if y.toNat + i < w then x.getLsbD (y.toNat + i) else x.msb) := by
simp only [← getLsbD_eq_getElem, BitVec.sshiftRight', BitVec.getLsbD_sshiftRight]

@[simp]
theorem getMsbD_sshiftRight' {x y: BitVec w} {i : Nat} :
(x.sshiftRight y.toNat).getMsbD i = (decide (i < w) && if i < y.toNat then x.msb else x.getMsbD (i - y.toNat)) := by
Expand Down Expand Up @@ -3224,7 +3230,11 @@ theorem toNat_abs {x : BitVec w} : x.abs.toNat = if x.msb then 2^w - x.toNat els
· simp [h]

theorem getLsbD_abs {i : Nat} {x : BitVec w} :
getLsbD x.abs i = if x.msb then getLsbD (-x) i else getLsbD x i := by
getLsbD x.abs i = if x.msb then getLsbD (-x) i else getLsbD x i := by
by_cases h : x.msb <;> simp [BitVec.abs, h]

theorem getElem_abs {i : Nat} {x : BitVec w} (h : i < w) :
x.abs[i] = if x.msb then (-x)[i] else x[i] := by
by_cases h : x.msb <;> simp [BitVec.abs, h]

theorem getMsbD_abs {i : Nat} {x : BitVec w} :
Expand Down

0 comments on commit 459c6e2

Please sign in to comment.