Skip to content

Commit

Permalink
chore: reverse direction of List.tail_map (leanprover#5275)
Browse files Browse the repository at this point in the history
  • Loading branch information
kim-em authored and tobiasgrosser committed Sep 16, 2024
1 parent 31fb766 commit 6d514fc
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions src/Init/Data/List/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1151,18 +1151,18 @@ theorem map_eq_foldr (f : α → β) (l : List α) : map f l = foldr (fun a bs =
@[simp] theorem head?_map (f : α → β) (l : List α) : head? (map f l) = (head? l).map f := by
cases l <;> rfl

@[simp] theorem tail?_map (f : α → β) (l : List α) : tail? (map f l) = (tail? l).map (map f) := by
@[simp] theorem map_tail? (f : α → β) (l : List α) : (tail? l).map (map f) = tail? (map f l) := by
cases l <;> rfl

@[simp] theorem tail_map (f : α → β) (l : List α) :
(map f l).tail = map f l.tail := by
@[simp] theorem map_tail (f : α → β) (l : List α) :
map f l.tail = (map f l).tail := by
cases l <;> simp_all

theorem headD_map (f : α → β) (l : List α) (a : α) : headD (map f l) (f a) = f (headD l a) := by
cases l <;> rfl

theorem tailD_map (f : α → β) (l : List α) (l' : List α) :
tailD (map f l) (map f l') = map f (tailD l l') := by simp
tailD (map f l) (map f l') = map f (tailD l l') := by simp [← map_tail?]

@[simp] theorem getLast_map (f : α → β) (l : List α) (h) :
getLast (map f l) h = f (getLast l (by simpa using h)) := by
Expand Down

0 comments on commit 6d514fc

Please sign in to comment.