Skip to content

Commit

Permalink
chore: fix implicitness in refl/rfl lemma binders (leanprover#5077)
Browse files Browse the repository at this point in the history
  • Loading branch information
kim-em authored Aug 16, 2024
1 parent eb15c08 commit b939fef
Showing 1 changed file with 9 additions and 6 deletions.
15 changes: 9 additions & 6 deletions src/Init/Data/List/Sublist.lean
Original file line number Diff line number Diff line change
Expand Up @@ -558,11 +558,14 @@ theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂ := fun ⟨t, h⟩ =>

@[simp] theorem nil_infix {l : List α} : [] <:+: l := nil_prefix.isInfix

@[simp] theorem prefix_refl {l : List α} : l <+: l := ⟨[], append_nil _⟩
theorem prefix_refl (l : List α) : l <+: l := ⟨[], append_nil _⟩
@[simp] theorem prefix_rfl {l : List α} : l <+: l := prefix_refl l

@[simp] theorem suffix_refl {l : List α} : l <:+ l := ⟨[], rfl⟩
theorem suffix_refl (l : List α) : l <:+ l := ⟨[], rfl⟩
@[simp] theorem suffix_rfl {l : List α} : l <:+ l := suffix_refl l

@[simp] theorem infix_refl {l : List α} : l <:+: l := prefix_refl.isInfix
theorem infix_refl (l : List α) : l <:+: l := prefix_rfl.isInfix
@[simp] theorem infix_rfl {l : List α} : l <:+: l := infix_refl l

@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l := suffix_append [a]

Expand Down Expand Up @@ -598,11 +601,11 @@ protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂ :=
protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂ :=
hl.sublist.subset

@[simp] theorem infix_nil : l <:+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ infix_refl)⟩
@[simp] theorem infix_nil : l <:+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ infix_rfl)⟩

@[simp] theorem prefix_nil : l <+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ prefix_refl)⟩
@[simp] theorem prefix_nil : l <+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ prefix_rfl)⟩

@[simp] theorem suffix_nil : l <:+ [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ suffix_refl)⟩
@[simp] theorem suffix_nil : l <:+ [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ suffix_rfl)⟩

theorem eq_nil_of_infix_nil (h : l <:+: []) : l = [] := infix_nil.mp h
theorem eq_nil_of_prefix_nil (h : l <+: []) : l = [] := prefix_nil.mp h
Expand Down

0 comments on commit b939fef

Please sign in to comment.