Skip to content

Commit

Permalink
feat: add sshiftRight/shiftLeft_*_distrib
Browse files Browse the repository at this point in the history
  • Loading branch information
tobiasgrosser committed Aug 8, 2024
1 parent 7776852 commit ca6e927
Showing 1 changed file with 51 additions and 0 deletions.
51 changes: 51 additions & 0 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -559,6 +559,15 @@ theorem and_comm (x y : BitVec w) :
rw [← testBit_toNat, getLsb, getLsb]
simp

@[simp] theorem getMsb_xor {x y : BitVec w} :
(x ^^^ y).getMsb i = (xor (x.getMsb i) (y.getMsb i)) := by
simp only [getMsb]
by_cases h : i < w <;> simp [h]

@[simp] theorem msb_xor {x y : BitVec w} :
(x ^^^ y).msb = (xor x.msb y.msb) := by
simp [BitVec.msb]

@[simp] theorem truncate_xor {x y : BitVec w} :
(x ^^^ y).truncate k = x.truncate k ^^^ y.truncate k := by
ext
Expand Down Expand Up @@ -651,6 +660,24 @@ theorem zero_shiftLeft (n : Nat) : 0#w <<< n = 0#w := by
cases h₁ : decide (i < m) <;> cases h₂ : decide (n ≤ i) <;> cases h₃ : decide (i < n)
all_goals { simp_all <;> omega }

theorem shiftLeft_xor_distrib (x y : BitVec w) (n : Nat) :
(x ^^^ y) <<< n = (x <<< n) ^^^ (y <<< n) := by
ext i
simp
by_cases h : (i < n) <;> simp [h]

theorem shiftLeft_and_distrib (x y : BitVec w) (n : Nat) :
(x &&& y) <<< n = (x <<< n) &&& (y <<< n) := by
ext i
simp
by_cases h : (i < n) <;> simp [h]

theorem shiftLeft_or_distrib (x y : BitVec w) (n : Nat) :
(x ||| y) <<< n = (x <<< n) ||| (y <<< n) := by
ext i
simp
by_cases h : (i < n) <;> simp [h]

@[simp] theorem getMsb_shiftLeft (x : BitVec w) (i) :
(x <<< i).getMsb k = x.getMsb (k + i) := by
simp only [getMsb, getLsb_shiftLeft]
Expand Down Expand Up @@ -822,6 +849,30 @@ theorem sshiftRight_eq_of_msb_true {x : BitVec w} {s : Nat} (h : x.msb = true) :
Nat.not_lt, decide_eq_true_eq]
omega

theorem sshiftRight_xor_distrib (x y : BitVec w) (n : Nat) :
(x ^^^ y).sshiftRight n = (x.sshiftRight n) ^^^ (y.sshiftRight n) := by
ext i
simp
split <;>
by_cases w ≤ i <;>
simp [*]

theorem sshiftRight_and_distrib (x y : BitVec w) (n : Nat) :
(x &&& y).sshiftRight n = (x.sshiftRight n) &&& (y.sshiftRight n) := by
ext i
simp
split <;>
by_cases w ≤ i <;>
simp [*]

theorem sshiftRight_or_distrib (x y : BitVec w) (n : Nat) :
(x ||| y).sshiftRight n = (x.sshiftRight n) ||| (y.sshiftRight n) := by
ext i
simp
split <;>
by_cases w ≤ i <;>
simp [*]

/-- The msb after arithmetic shifting right equals the original msb. -/
theorem sshiftRight_msb_eq_msb {n : Nat} {x : BitVec w} :
(x.sshiftRight n).msb = x.msb := by
Expand Down

0 comments on commit ca6e927

Please sign in to comment.