pyxray is a Python library that defines basic object to specify atomic subshells and X-ray transitions. The objects also provide critical information as the energy, existence and different notations of the X-ray transitions.
pyxray supports 3.6+ (no Python 2.x support).
Easiest way to install using pip
:
pip install pyxray
For development installation from the git repository:
git clone git@github.com/openmicroanalysis/pyxray.git cd pyxray pip install -e . pre-commit install
See development section below
All methods below are accessed by importing pyxray
:
import pyxray
Variables of the methods are defined as follows
element
:- either
- Element object
- atomic number
- symbol (case insensitive)
- name (in any language, case insensitive)
- object with attribute
atomic_number
orz
atomic_shell
:- either
- AtomicShell object
- principal quantum number
- any notation (case insensitive)
atomic_subshell
:- either
- AtomicSubshell object
- a
tuple
of principal quantum number, azimuthal quantum number and total angular momentum nominator (e.g.(1, 0, 1)
for the atomic subshell1s^{0.5}
- any notation (case insensitive)
xray_transition
:- either
- XrayTransition object
- a
tuple
of source and destination subshells - any notation (case insensitive)
language
:- language code (e.g.
en
,fr
,de
)
notation
:- name of a notation (case insensitive),
iupac
,siegbahn
andorbital
are usually supported
encoding
:- type of encoding, either
ascii
,utf16
,html
orlatex
reference
:- reference to use to retrieve this value, either
- Reference object
- BibTeX key of a reference
None
, the newest reference will be returned
Properties associated with an element, defined as the ground state of an atom where the number of protons equal the number of electrons.
pyxray.element(element)
Returns element descriptor.
pyxray.element_atomic_number(element)
Returns atomic number of an element.
Examples:
pyxray.element_atomic_number('fe') #=> 26 pyxray.element_atomic_number('Fe') #=> 26 pyxray.element_atomic_number('iron') #=> 26 pyxray.element_atomic_number('eisen') #=> 26
pyxray.element_symbol(element, reference=None)
Returns symbol of an element.
pyxray.element_name(element, language='en', reference=None)
Returns full name of an element, in the language specified.
pyxray.element_atomic_weight(element, reference=None)
Returns atomic weight of an element. The atomic weight is defined by the CIAAW as it is the ratio of the average atomic mass of an element over 1/12 of the mass of the carbon-12 atom.
pyxray.element_mass_density_kg_per_m3(element, reference=None)
Returns mass density (in kg/m3) of an element.
pyxray.element_mass_density_g_per_cm3(element, reference=None)
Returns mass density (in g/cm3) of an element.
pyxray.element_xray_transition(element, reference=None)
Returns X-ray transition descriptor if x-ray transition has a probability greater than 0 for that element.
pyxray.element_xray_transitions(element, xray_transition_set=None, reference=None)
Returns all X-ray transitions which have a probability greater than 0 for that element. If xray_transition_set is not
None
, returns all x-ray transitions for this x-ray transition set.
Properties associated with an atomic shell, defined by its principal quantum number.
pyxray.atomic_shell(atomic_shell)
- Returns atomic shell descriptor.
pyxray.atomic_shell_notation(atomic_shell, notation, encoding='utf16', reference=None)
- Returns notation of an atomic shell.
Properties associated with an atomic subshell, a subdivision of atomic shells.
pyxray.atomic_subshell(atomic_subshell)
Returns atomic subshell descriptor.
pyxray.atomic_subshell_notation(atomic_subshell, notation, encoding='utf16', reference=None)
Returns notation of an atomic subshell.
Examples:
pyxray.atomic_subshell_notation('L3', 'iupac', 'latex') #=> 'L$_{3}$' pyxray.atomic_subshell_notation('L3', 'orbital') #-> '2p3/2'
pyxray.atomic_subshell_binding_energy_eV(element, atomic_subshell, reference=None)
Returns binding energy of an element and atomic subshell (in eV).
pyxray.atomic_subshell_radiative_width_eV(element, atomic_subshell, reference=None)
Returns radiative width of an element and atomic subshell (in eV).
pyxray.atomic_subshell_nonradiative_width_eV(element, atomic_subshell, reference=None)
Returns nonradiative width of an element and atomic subshell (in eV).
pyxray.atomic_subshell_occupancy(element, atomic_subshell, reference=None)
Returns occupancy of an element and atomic subshell.
Properties associated with an electron transition, relaxation process of an electron between quantum states leading to X-rays emission.
pyxray.xray_transition(xray_transition)
Returns X-ray transition descriptor.
pyxray.xray_transition_notation(xray_transition, notation, encoding='utf16', reference=None)
Returns notation of an X-ray transition.
Examples:
pyxray.transition_notation('Ka1', 'iupac') #=> 'K-L3' pyxray.transition_notation('Ka', 'iupac') #=> 'K-L2,3' pyxray.transition_notation('L3-M1', 'siegbahn', 'ascii') #=> 'Ll'
pyxray.xray_transition_energy_eV(element, xray_transition, reference=None)
Returns energy of an element and X-ray transition (in eV).
Examples:
pyxray.xray_transition_energy_eV(14, 'Ka1') #=> 1740.0263764535946 pyxray.xray_transition_energy_eV(14, 'Ma1') #=> NotFound exception
pyxray.xray_transition_probability(element, xray_transition, reference=None)
Returns probability of an element and X-ray transition.
pyxray.xray_transition_relative_weight(element, xray_transition, reference=None)
Returns relative weight of an element and X-ray transition.
Object to represent an x-ray transition and its properties.
pyxray.xray_line(element, xray_transition, reference=None)
- Returns X-ray line descriptor.
xrayline = pyxray.xray_line(14, 'Ka1')
xrayline.atomic_number #=> 14
xrayline.transition #=> XrayTransition(2, 1, 3, 1, 0, 1)
xrayline.iupac #=> Si K–L3
xrayline.siegbahn #=> Si Kα1
xrayline.energy_eV #=> 1740.0
xrayline.probability #=> 0.031705199999999996
xrayline.relative_weight #=> 1.0
As any other descriptors, X-ray line objects are immutable and hashable so they can be used as keys of a dictionary.
xrayline1 = pyxray.xray_line(13, 'Ka1')
xrayline2 = pyxray.xray_line('Al', 'Ka1')
xrayline1 == xrayline2 #=> True
pyxray.xray_line(13, 'Ka1') == pyxray.xray_line(13, 'Ka') #=> False
To sort X-ray lines, use one of their properties:
from operator import attrgetter
lines = [pyxray.xray_line(14, 'Ka1'), pyxray.xray_line(13, 'Ka1'), pyxray.xray_line(14, 'Ll')]
sorted(lines, key=attrgetter('energy_eV')) #=> [XrayLine(Si L3–M1), XrayLine(Al K–L3), XrayLine(Si K–L3)]
Defines a composition of a compound.
To create a composition, use the class methods:
Composition.from_pure(z)
Composition.from_formula(formula)
Composition.from_mass_fractions(mass_fractions, formula=None)
Composition.from_atomic_fractions(atomic_fractions, formula=None)
Use the following attributes to access the composition values:
mass_fractions
:dict
where the keys are atomic numbers and the values weight fractions.atomic_fractions
:dict
where the keys are atomic numbers and the values atomic fractions.formula
: chemical formula
The composition object is immutable, i.e. it cannot be modified once created. Equality can be checked. It is hashable. It can be pickled or copied.
- #19 Get transitions for light elements when no probability are available
- #20 Use GitHub Actions for continuous integration. Add pre-commit hooks and black formatting.
- Fix deprecation warning with new setuptools
- Fix problem with requests caching
- Add ordering of Element, AtomicShell, AtomicSubshell
- Use sqlalchemy to create and interact with database
- Add probability and relative weight properties to XrayLine
- Add possibility to define preferred references
- Add composition object
- Fix descriptors can be copied and pickled.
- Fix method element_xray_transitions not to return duplicates.
- Add energy to XrayLine.
- Fix missing energy property for x-ray transition sets from JEOL database.
- Clean up of unit tests.
- Make XrayLine a descriptor and add method to create it from database.
- Fix in build process.
- Add
XrayLine
class.
pyxray stores all data for the above functions in a SQLite database.
The database is constructed during the build process of the Python package
(i.e. python setup.py build
) using registered parsers.
The provided parsers are located in the package pyxray.parser
, but external
parsers can be provided by registering to the entry point pyxray.parser
.
In short, the database is not provide in the source code, only in the
distributed version.
It is therefore necessary to build the SQLite database when running pyxray
in development mode.
Building the database will take several minutes.
In short, in the pyxray folder, run
pip install -e .[develop]
python3 setup.py build
Build the documentation:
$ cd docs
$ make html
Add or modify the API documentation:
$ cd docs
$ sphinx-apidoc -o source/api -e -f -P ../pyxray
$ make html
The library is provided under the MIT license.
pyxray was partially developed as part of the doctorate thesis project of Philippe T. Pinard at RWTH Aachen University (Aachen, Germany) under the supervision of Dr. Silvia Richter.
Copyright (c) 2015-2016/06 Philippe Pinard and Silvia Richter
Copyright (c) 2016/06-2020 Philippe Pinard