@@ -139,40 +139,47 @@ def SimulationLoop(
139
139
imputed_r2_threshold = 0.9 ,
140
140
ld_score_threshold = 5 ,
141
141
sum_pips = 0.99 ,
142
- primary_signal_pval_threshold = 1e-2 ,
143
- secondary_signal_pval_threshold = 1e-2 ,
142
+ lead_pval_threshold = 1 ,
144
143
purity_mean_r2_threshold = 0 ,
145
144
purity_min_r2_threshold = 0 ,
146
145
cs_lbf_thr = 2 ,
146
+ ld_min_r2 = 0.9 ,
147
+ locusStart = 1 ,
148
+ locusEnd = 2 ,
147
149
)
148
- cred_set = CS_sim ["study_locus" ].df
149
-
150
- X = ld_index_pd ["variantId" ][x_cycle ["indexes" ]].tolist ()
151
-
152
- cred_set = cred_set .withColumn ("exploded_locus" , col ("locus.variantId" ))
153
- # Create a condition for each element in X
154
- conditions = [array_contains (col ("exploded_locus" ), x ) for x in X ]
155
- # Combine the conditions using the | operator
156
- combined_condition = conditions [0 ]
157
- for condition in conditions [1 :]:
158
- combined_condition = combined_condition | condition
159
- # Create a new column that is True if any condition is True and False otherwise
160
- cred_set = cred_set .withColumn ("is_in_X" , combined_condition )
161
-
162
- cred_set = cred_set .withColumn (
163
- "is_in_lead" , when (col ("variantId" ).isin (X ), 1 ).otherwise (0 )
164
- )
165
-
166
- cred_set = cred_set .toPandas ()
167
- cred_set = cred_set [column_list ]
168
150
169
- if counter == 1 :
170
- cred_sets = cred_set
171
- else :
172
- # cred_sets = cred_sets.unionByName(cred_set)
173
- cred_sets = pd .concat ([cred_sets , cred_set ], axis = 0 )
174
- # cred_sets=cred_sets.merge(cred_set)
175
- counter = counter + 1
151
+ if CS_sim is not None :
152
+ cs_sl = CS_sim ["study_locus" ]
153
+ cred_set = cs_sl .df
154
+
155
+ X = ld_index_pd ["variantId" ][x_cycle ["indexes" ]].tolist ()
156
+
157
+ cred_set = cred_set .withColumn (
158
+ "exploded_locus" , col ("locus.variantId" )
159
+ )
160
+ # Create a condition for each element in X
161
+ conditions = [array_contains (col ("exploded_locus" ), x ) for x in X ]
162
+ # Combine the conditions using the | operator
163
+ combined_condition = conditions [0 ]
164
+ for condition in conditions [1 :]:
165
+ combined_condition = combined_condition | condition
166
+ # Create a new column that is True if any condition is True and False otherwise
167
+ cred_set = cred_set .withColumn ("is_in_X" , combined_condition )
168
+
169
+ cred_set = cred_set .withColumn (
170
+ "is_in_lead" , when (col ("variantId" ).isin (X ), 1 ).otherwise (0 )
171
+ )
172
+
173
+ cred_set = cred_set .toPandas ()
174
+ cred_set = cred_set [column_list ]
175
+
176
+ if counter == 1 :
177
+ cred_sets = cred_set
178
+ else :
179
+ # cred_sets = cred_sets.unionByName(cred_set)
180
+ cred_sets = pd .concat ([cred_sets , cred_set ], axis = 0 )
181
+ # cred_sets=cred_sets.merge(cred_set)
182
+ counter = counter + 1
176
183
177
184
return cred_sets
178
185
0 commit comments