English | 简体中文
We provide Dockerfiles for Ubuntu* 18.04 and Ubuntu* 20.04 which can be used to build runtime Docker* images for OpenVINO™ integration with TensorFlow on CPU, GPU, VPU, and VAD-M. They contain all required runtime python packages, and shared libraries to support execution of a TensorFlow Python app with the OpenVINO™ backend. By default, it hosts a Jupyter server with an Image Classification and an Object Detection sample that demonstrate the performance benefits of using OpenVINO™ integration with TensorFlow.
The following ARGS are available to configure the docker build
TF_VERSION: TensorFlow version to be used. Defaults to "v2.9.3" OPENVINO_VERSION: OpenVINO version to be used. Defaults to "2022.3.0" OVTF_BRANCH: OpenVINO™ integration with TensorFlow branch to be used. Defaults to "releases/2.3.0"
Build the docker image
docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 - < ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0.dockerfile
Launch the Jupyter server with CPU access:
docker run -it --rm \
-p 8888:8888 \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0
Launch the Jupyter server with iGPU access:
docker run -it --rm \
-p 8888:8888 \
--device-cgroup-rule='c 189:* rmw' \
--device /dev/dri:/dev/dri \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0
Launch the Jupyter server with MYRIAD access:
docker run -it --rm \
-p 8888:8888 \
--device-cgroup-rule='c 189:* rmw' \
-v /dev/bus/usb:/dev/bus/usb \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0
Launch the Jupyter server with VAD-M access:
docker run -itu root:root --rm \
-p 8888:8888 \
--device-cgroup-rule='c 189:* rmw' \
--mount type=bind,source=/var/tmp,destination=/var/tmp \
--device /dev/ion:/dev/ion \
-v /dev/bus/usb:/dev/bus/usb \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0
Run image with runtime target /bin/bash for container shell with CPU, iGPU, and MYRIAD device access
docker run -itu root:root --rm \
-p 8888:8888 \
--device-cgroup-rule='c 189:* rmw' \
--device /dev/dri:/dev/dri \
--mount type=bind,source=/var/tmp,destination=/var/tmp \
-v /dev/bus/usb:/dev/bus/usb \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 /bin/bash
If execution fails on iGPU for 10th and 11th Generation Intel devices, provide docker build arg INTEL_OPENCL as 20.35.17767
docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 --build-arg INTEL_OPENCL=20.35.17767 - < ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0.dockerfile
Launch the Jupyter server with CPU access:
docker run -it --rm \
-p 8888:8888 \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0
Launch the Jupyter server with iGPU access:
Pre-requisites -
- Windows* 10 21H2 or Windows* 11 with WSL-2
- Intel iGPU driver >= 30.0.100.9684
docker run -it --rm \
-p 8888:8888 \
--device /dev/dxg:/dev/dxg \
--volume /usr/lib/wsl:/usr/lib/wsl \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0
Dockerfiles for TF-Serving with OpenVINOTM integration with Tensorflow
The TF Serving dockerfile requires the OpenVINO™ integration with TensorFlow Runtime image to be built. Refer to the section above for instructions on building it.
The following ARGS are available to configure the docker build
TF_SERVING_VERSION: Tag of the TF Serving image to use to build the model serving executable. Defaults to "2.9.3" OVTF_VERSION: Tag of the OpenVINO™ integration with TensorFlow Runtime image to use. Defaults to "2.3.0"
Build serving docker images:
-
This dockerfile builds, and installs tensorflow model server binary onto the OpenVINOTM integration with Tensorflow Runtime image.
docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving -f ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0-serving.dockerfile .
Here is an example to serve Resnet50 model using OpenVINO™ Integration with Tensorflow and a client script that performs inference on the model using the REST API.
-
Download Resnet50 model from TF Hub and untar its contents into the folder
resnet_v2_50_classifiation/5
-
Start serving container for the resnet50 model:
To run on CPU backend:
docker run -it --rm \ -p 8501:8501 \ -v <path to resnet_v2_50_classifiation>:/models/resnet \ -e MODEL_NAME=resnet \ openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
To run on iGPU:
docker run -it --rm \ -p 8501:8501 \ --device-cgroup-rule='c 189:* rmw' \ --device /dev/dri:/dev/dri \ -v <path to resnet_v2_50_classifiation>:/models/resnet \ -e MODEL_NAME=resnet \ -e OPENVINO_TF_BACKEND=GPU \ openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
To run on MYRIAD:
docker run -it --rm \ -p 8501:8501 \ --device-cgroup-rule='c 189:* rmw' \ -v /dev/bus/usb:/dev/bus/usb \ -v <path to resnet_v2_50_classifiation>:/models/resnet \ -e MODEL_NAME=resnet \ -e OPENVINO_TF_BACKEND=MYRIAD \ openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
To run on VAD-M:
docker run -itu root:root --rm \ -p 8501:8501 \ --device-cgroup-rule='c 189:* rmw' \ -v /dev/bus/usb:/dev/bus/usb \ --mount type=bind,source=/var/tmp,destination=/var/tmp \ --device /dev/ion:/dev/ion \ -v <path to resnet_v2_50_classifiation>:/models/resnet \ -e OPENVINO_TF_BACKEND=VAD-M \ -e MODEL_NAME=resnet \ openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
-
Run the script to send inference request from client and get predictions from server.
wget https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client.py python resnet_client.py
All related environmental variables that applies during the execution of OpenVINO™ integration with TensorFlow is applicable while running through containers also. For example, to disable OpenVINO™ integration with TensorFlow while starting a TensorFlow Serving container, simply provide OPENVINO_TF_DISABLE=1 as one of the environmental variables of the docker run
command. See USAGE.md for more such environmental variables.
docker run -it --rm \
-p 8501:8501 \
-v <path to resnet_v2_50_classifiation>:/models/resnet \
-e MODEL_NAME=resnet \
-e OPENVINO_TF_DISABLE=1 \
openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
* Other names and brands may be claimed as the property of others.