Skip to content
This repository has been archived by the owner on Jul 1, 2024. It is now read-only.

Latest commit

 

History

History
179 lines (125 loc) · 7.37 KB

README.md

File metadata and controls

179 lines (125 loc) · 7.37 KB

English | 简体中文

OpenVINO™ integration with TensorFlow Runtime Dockerfiles for Ubuntu* 18.04 and Ubuntu* 20.04

We provide Dockerfiles for Ubuntu* 18.04 and Ubuntu* 20.04 which can be used to build runtime Docker* images for OpenVINO™ integration with TensorFlow on CPU, GPU, VPU, and VAD-M. They contain all required runtime python packages, and shared libraries to support execution of a TensorFlow Python app with the OpenVINO™ backend. By default, it hosts a Jupyter server with an Image Classification and an Object Detection sample that demonstrate the performance benefits of using OpenVINO™ integration with TensorFlow.

The following ARGS are available to configure the docker build

TF_VERSION: TensorFlow version to be used. Defaults to "v2.9.3" OPENVINO_VERSION: OpenVINO version to be used. Defaults to "2022.3.0" OVTF_BRANCH: OpenVINO™ integration with TensorFlow branch to be used. Defaults to "releases/2.3.0"

Build the docker image

docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 - < ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0.dockerfile

For Ubuntu

Launch the Jupyter server with CPU access:

docker run -it --rm \
	   -p 8888:8888 \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

Launch the Jupyter server with iGPU access:

docker run -it --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   --device /dev/dri:/dev/dri \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

Launch the Jupyter server with MYRIAD access:

docker run -it --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   -v /dev/bus/usb:/dev/bus/usb \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

Launch the Jupyter server with VAD-M access:

docker run -itu root:root --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   --mount type=bind,source=/var/tmp,destination=/var/tmp \
	   --device /dev/ion:/dev/ion \
	   -v /dev/bus/usb:/dev/bus/usb \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

Run image with runtime target /bin/bash for container shell with CPU, iGPU, and MYRIAD device access

docker run -itu root:root --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   --device /dev/dri:/dev/dri \
	   --mount type=bind,source=/var/tmp,destination=/var/tmp \
	   -v /dev/bus/usb:/dev/bus/usb \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 /bin/bash

If execution fails on iGPU for 10th and 11th Generation Intel devices, provide docker build arg INTEL_OPENCL as 20.35.17767

docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 --build-arg INTEL_OPENCL=20.35.17767 - < ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0.dockerfile

For Windows

Launch the Jupyter server with CPU access:

docker run -it --rm \
	-p 8888:8888 \
	openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

Launch the Jupyter server with iGPU access:

Pre-requisites -

docker run -it --rm \
	-p 8888:8888 \
	--device /dev/dxg:/dev/dxg \
	--volume /usr/lib/wsl:/usr/lib/wsl \
	openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

Dockerfiles for TF-Serving with OpenVINOTM integration with Tensorflow

The TF Serving dockerfile requires the OpenVINO™ integration with TensorFlow Runtime image to be built. Refer to the section above for instructions on building it.

The following ARGS are available to configure the docker build

TF_SERVING_VERSION: Tag of the TF Serving image to use to build the model serving executable. Defaults to "2.9.3" OVTF_VERSION: Tag of the OpenVINO™ integration with TensorFlow Runtime image to use. Defaults to "2.3.0"

Build serving docker images:

  1. This dockerfile builds, and installs tensorflow model server binary onto the OpenVINOTM integration with Tensorflow Runtime image.

     docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving -f ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0-serving.dockerfile .
    

Here is an example to serve Resnet50 model using OpenVINO™ Integration with Tensorflow and a client script that performs inference on the model using the REST API.

  1. Download Resnet50 model from TF Hub and untar its contents into the folder resnet_v2_50_classifiation/5

  2. Start serving container for the resnet50 model:

    To run on CPU backend:

     docker run -it --rm \
     	   -p 8501:8501 \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e MODEL_NAME=resnet \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    

    To run on iGPU:

     docker run -it --rm \
     	   -p 8501:8501 \
     	   --device-cgroup-rule='c 189:* rmw' \
     	   --device /dev/dri:/dev/dri \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e MODEL_NAME=resnet \
     	   -e OPENVINO_TF_BACKEND=GPU \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    

    To run on MYRIAD:

     docker run -it --rm \
     	   -p 8501:8501 \
     	   --device-cgroup-rule='c 189:* rmw' \
     	   -v /dev/bus/usb:/dev/bus/usb \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e MODEL_NAME=resnet \
     	   -e OPENVINO_TF_BACKEND=MYRIAD \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    

    To run on VAD-M:

     docker run -itu root:root --rm \
     	   -p 8501:8501 \
     	   --device-cgroup-rule='c 189:* rmw' \
     	   -v /dev/bus/usb:/dev/bus/usb \
     	   --mount type=bind,source=/var/tmp,destination=/var/tmp \
     	   --device /dev/ion:/dev/ion \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e OPENVINO_TF_BACKEND=VAD-M \
     	   -e MODEL_NAME=resnet \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    
  3. Run the script to send inference request from client and get predictions from server.

     wget https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client.py
     python resnet_client.py
    

All related environmental variables that applies during the execution of OpenVINO™ integration with TensorFlow is applicable while running through containers also. For example, to disable OpenVINO™ integration with TensorFlow while starting a TensorFlow Serving container, simply provide OPENVINO_TF_DISABLE=1 as one of the environmental variables of the docker run command. See USAGE.md for more such environmental variables.

	docker run -it --rm \
		   -p 8501:8501 \
		   -v <path to resnet_v2_50_classifiation>:/models/resnet \
		   -e MODEL_NAME=resnet \
		   -e OPENVINO_TF_DISABLE=1 \
		   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving

Prebuilt Images


* Other names and brands may be claimed as the property of others.