Skip to content
This repository has been archived by the owner on Jul 1, 2024. It is now read-only.

Latest commit

 

History

History
151 lines (106 loc) · 6.52 KB

README_cn.md

File metadata and controls

151 lines (106 loc) · 6.52 KB

English | 简体中文

OpenVINO™ integration with TensorFlow Runtime Docker文件 Ubuntu* 18.04和Ubuntu* 20.04

我们提供Ubuntu* 18.04和Ubuntu* 20.04 Dockerfiles, 可用来构建用于CPU、GPU、VPU和VAD-M上OpenVINO™ integration with TensorFlow的运行时Docker*图像。 它们包含所有运行时python所需安装包及共享库,以支持使用OpenVINO™后端执行TensorFlow Python应用程序。默认条件下,它可托管一个Jupyter服务器,该服务器附带Image Classification及演示在CPU上使用OpenVINO™ integration with TensorFlow的性能优势的Object Detection示例。

以下 ARGS 可用于配置 docker build

TF_VERSION:要使用的 TensorFlow 版本。默认为“v2.9.3”
OPENVINO_VERSION:要使用的 OpenVINO 版本。默认为“2022.3.0”
OVTF_BRANCH:要使用的 OpenVINO™ integration with TensorFlow 分支。默认为“releases/2.3.0”

构建docker镜像

docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 - < ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0.dockerfile

启动可访问CPU的Jupyter服务器:

docker run -it --rm \
	   -p 8888:8888 \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

启动可访问iGPU的Jupyter服务器:

docker run -it --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   --device /dev/dri:/dev/dri \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

启动可访问MYRIAD的Jupyter服务器:

docker run -it --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   -v /dev/bus/usb:/dev/bus/usb \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

启动可访问VAD-M的Jupyter服务器:

docker run -itu root:root --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   --mount type=bind,source=/var/tmp,destination=/var/tmp \
	   --device /dev/ion:/dev/ion \
	   -v /dev/bus/usb:/dev/bus/usb \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0

启动可以访问“所有“计算单元的容器,并通过/bin/bash 提供容器shell访问:

docker run -itu root:root --rm \
	   -p 8888:8888 \
	   --device-cgroup-rule='c 189:* rmw' \
	   --device /dev/dri:/dev/dri \
	   --mount type=bind,source=/var/tmp,destination=/var/tmp \
	   -v /dev/bus/usb:/dev/bus/usb \
	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 /bin/bash

如果在英特尔第10和11代设备iGPU上执行失败, 请设定docker构建参数INTEL_OPENCL为20.35.17767

docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0 --build-arg INTEL_OPENCL=20.35.17767 - < ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0.dockerfile

Dockerfiles for TF-Serving with OpenVINOTM integration with Tensorflow

The TF Serving dockerfile requires the OpenVINO™ integration with TensorFlow Runtime image to be built. Refer to the section above for instructions on building it.

以下 ARGS 可用于配置 docker build

TF_SERVING_VERSION: 用于构建模型服务可执行文件的 TF Serving 映像的标记。默认为“v2.9.3”
OVTF_VERSION: 要使用的 OpenVINO™ integration with TensorFlow Runtime 集成图像的标签。认为"2.3.0"

构建服务docker镜像:

  1. 该docker文件可构建OpenVINOTM integration with Tensorflow运行时镜像并在上面安装tensorflow模型服务器二进制文件。

     docker build -t openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving -f ubuntu20/openvino_tensorflow_cgvh_runtime_2.3.0-serving.dockerfile .
    

此处为Resnet50模型使用OpenVINO Integration with Tensorflow实例,提供了REST API相关客户端脚本。

  1. 从TF社区下载Resnet50 model并将其目录解压至resnet_v2_50_classifiation/5文件夹。

  2. 启动resnet50模型的服务容器:

    CPU后端上运行:

     docker run -it --rm \
     	   -p 8501:8501 \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e MODEL_NAME=resnet \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    

    iGPU上运行:

     docker run -it --rm \
     	   -p 8501:8501 \
     	   --device-cgroup-rule='c 189:* rmw' \
     	   --device /dev/dri:/dev/dri \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e MODEL_NAME=resnet \
     	   -e OPENVINO_TF_BACKEND=GPU \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    

    MYRIAD上运行:

     docker run -it --rm \
     	   -p 8501:8501 \
     	   --device-cgroup-rule='c 189:* rmw' \
     	   -v /dev/bus/usb:/dev/bus/usb \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e MODEL_NAME=resnet \
     	   -e OPENVINO_TF_BACKEND=MYRIAD \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    

    MYRIAD上运行:

     docker run -itu root:root --rm \
     	   -p 8501:8501 \
     	   --device-cgroup-rule='c 189:* rmw' \
     	   -v /dev/bus/usb:/dev/bus/usb \
     	   --mount type=bind,source=/var/tmp,destination=/var/tmp \
     	   --device /dev/ion:/dev/ion \
     	   -v <path to resnet_v2_50_classifiation>:/models/resnet \
     	   -e OPENVINO_TF_BACKEND=VAD-M \
     	   -e MODEL_NAME=resnet \
     	   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving
    
  3. 运行脚本从客户端发送推理请求并从服务器获取预测。 wget https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client.py python resnet_client.py

在执行 OpenVINO™ integration with TensorFlow 集成时应用的所有相关环境变量在通过容器运行时也适用。例如,要在启动 TensorFlow Serving 容器时禁用 OpenVINO™ integration with TensorFlow 的集成,只需提供 OPENVINO_TF_DISABLE=1 作为 docker run 命令的环境变量之一。有关更多此类环境变量,请参见 USAGE.md

	docker run -it --rm \
		   -p 8501:8501 \
		   -v <path to resnet_v2_50_classifiation>:/models/resnet \
		   -e MODEL_NAME=resnet \
		   -e OPENVINO_TF_DISABLE=1 \
		   openvino/openvino_tensorflow_ubuntu20_runtime:2.3.0-serving

预构建镜像


* 其他名称和品牌可能已被声明为他人资产。