Adaptive Dissipation Control — Comprehensive benchmark suite for superconducting qubits.
Features
- Baseline, Dynamical Decoupling (XY8), ADC, Hybrid
- Temperature-dependent optimization
- Bootstrap confidence intervals
- Quick/Full modes for CI vs. full experiments
Requirements
- Python 3.10+
- Recommended: conda (qutip is easiest to install from conda-forge)
Quick install (recommended)
# create env (recommended)
conda create -n adcbench -c conda-forge python=3.10 qutip matplotlib numpy
conda activate adcbenchOr with pip (may fail or be slow for qutip):
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txtRun
- Quick smoke run (fast, runs 50 mK quick mode, writes
adc_temperature_sweep.png):
python -m src --quickOr run the script directly:
python src/adc_benchmark.py --quick- Full benchmark:
python -m srcOr:
python src/adc_benchmark.pyTesting & CI
- A lightweight smoke test is provided in
tests/. Run it locally with:
pytest -q tests/test_smoke.py- GitHub Actions runs the smoke test in a small conda environment.
Files to pay attention to
adc_benchmark.py(main script) — move top-level prints undermain()and add--quickflag.requirements.txt,LICENSE,.github/workflows/ci.yml
License
- MIT (see LICENSE file)