Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adjust to renaming of rank(A::FinGenAbGroup) to torsion_free_rank(A::FinGenAbGroup) #3457

Merged
merged 8 commits into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions experimental/FTheoryTools/src/auxiliary.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,10 @@ function _ambient_space(base::NormalToricVariety, fiber_amb_space::NormalToricVa

# Compute divisor group and the class group of a_space
a_space_divisor_group = free_abelian_group(nrows(a_rays))
a_space_class_group = free_abelian_group(ncols(b_grades) + rank(class_group(fiber_amb_space)))
a_space_class_group = free_abelian_group(ncols(b_grades) + torsion_free_rank(class_group(fiber_amb_space)))

# Compute grading of Cox ring of a_space
a_space_grading = zero_matrix(ZZ, rank(a_space_divisor_group), rank(a_space_class_group))
a_space_grading = zero_matrix(ZZ, torsion_free_rank(a_space_divisor_group), torsion_free_rank(a_space_class_group))
a_space_grading[1:nrows(b_grades), 1:ncols(b_grades)] = b_grades
a_space_grading[1+nrows(b_rays):nrows(b_rays) + nrows(f_grades), 1+ncols(b_grades):ncols(b_grades) + ncols(f_grades)] = f_grades
a_space_grading[1+nrows(b_rays), 1:ncols(D1_coeffs)] = D1_coeffs
Expand Down
8 changes: 4 additions & 4 deletions experimental/GModule/GaloisCohomology.jl
Original file line number Diff line number Diff line change
Expand Up @@ -542,7 +542,7 @@ Follows Debeerst rather closely...
function debeerst(M::FinGenAbGroup, sigma::Map{FinGenAbGroup, FinGenAbGroup})
@assert domain(sigma) == codomain(sigma) == M
@assert all(x->sigma(sigma(x)) == x, gens(M))
@assert is_free(M) && rank(M) == ngens(M)
@assert is_free(M) && torsion_free_rank(M) == ngens(M)

K, mK = kernel(id_hom(M)+sigma)
fl, mX = has_complement(mK)
Expand All @@ -557,8 +557,8 @@ function debeerst(M::FinGenAbGroup, sigma::Map{FinGenAbGroup, FinGenAbGroup})

_K, _mK = snf(K)
_S, _mS = snf(S)
@assert is_trivial(_S) || rank(_S) == ngens(_S)
@assert rank(_K) == ngens(_K)
@assert is_trivial(_S) || torsion_free_rank(_S) == ngens(_S)
@assert torsion_free_rank(_K) == ngens(_K)

m = matrix(FinGenAbGroupHom(_mS * mSK * inv((_mK))))
# elt in S * m = elt in K
Expand Down Expand Up @@ -1912,7 +1912,7 @@ function shrink(C::GModule{PermGroup, FinGenAbGroup}, attempts::Int = 10)
o = Oscar.orbit(q, rand(gens(q.M)))
if length(o) == order(group(q))
s, ms = sub(q.M, collect(o), false)
if rank(s) == length(o)
if torsion_free_rank(s) == length(o)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is another place where we need to be careful about the type of s I think.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If I remember the idea correctly, the change should be correct. But @fieker should confirm.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks good

q, _mq = quo(q, ms, false)
if first
mq = _mq
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,7 @@ julia> coordinate_names(antv)
```
"""
@attr Vector{String} function coordinate_names(v::NormalToricVarietyType)
return ["x$(i)" for i in 1:rank(torusinvariant_weil_divisor_group(v))]
return ["x$(i)" for i in 1:torsion_free_rank(torusinvariant_weil_divisor_group(v))]
end


Expand Down Expand Up @@ -679,8 +679,8 @@ julia> torusinvariant_prime_divisors(p2)
@attr Vector{ToricDivisor} function torusinvariant_prime_divisors(v::NormalToricVarietyType)
ti_divisors = torusinvariant_weil_divisor_group(v)
prime_divisors = ToricDivisor[]
for i in 1:rank(ti_divisors)
coeffs = zeros(Int, rank(ti_divisors))
for i in 1:torsion_free_rank(ti_divisors)
coeffs = zeros(Int, torsion_free_rank(ti_divisors))
coeffs[i] = 1
push!(prime_divisors, toric_divisor(v, coeffs))
end
Expand Down Expand Up @@ -756,7 +756,7 @@ Map
number_of_cones = size(max_cones)[1]

# compute quantities needed to construct the matrices
rc = rank(character_lattice(v))
rc = torsion_free_rank(character_lattice(v))
number_ray_is_part_of_max_cones = [length(max_cones[:, k].s) for k in 1:number_of_rays]
s = sum(number_ray_is_part_of_max_cones)
cones_ray_is_part_of = [filter(x -> max_cones[x, r], 1:number_of_cones) for r in 1:number_of_rays]
Expand Down Expand Up @@ -784,7 +784,7 @@ Map
end

# compute the matrix for mapping to torusinvariant Weil divisors
map_to_weil_divisors = zero_matrix(ZZ, number_of_cones * rc, rank(torusinvariant_weil_divisor_group(v)))
map_to_weil_divisors = zero_matrix(ZZ, number_of_cones * rc, torsion_free_rank(torusinvariant_weil_divisor_group(v)))
for i in 1:number_of_rays
map_to_weil_divisors[(cones_ray_is_part_of[i][1]-1)*rc+1:cones_ray_is_part_of[i][1]*rc, i] = [ZZRingElem(-c) for c in fan_rays[:, i]]
end
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ true
if is_projective(v) == false
return false
end
if rank(class_group(v)) > 1
if torsion_free_rank(class_group(v)) > 1
return false
end
w = [[Int(x) for x in transpose(g.coeff)] for g in gens(class_group(v))]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ Torus-invariant, non-prime divisor on a normal toric variety
```
"""
function divisor_of_character(v::NormalToricVarietyType, character::Vector{T}) where {T <: IntegerUnion}
r = rank(character_lattice(v))
r = torsion_free_rank(character_lattice(v))
@req length(character) == r "Character must consist of $r integers"
f = map_from_character_lattice_to_torusinvariant_weil_divisor_group(v)
char = sum(character .* gens(domain(f)))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ Map
cod = codomain(tm)
cod_rays = matrix(ZZ, rays(cod))
images = matrix(ZZ, rays(d)) * matrix(grid_morphism(tm))
mapping_matrix = matrix(ZZ, zeros(ZZ, rank(torusinvariant_weil_divisor_group(cod)), 0))
mapping_matrix = matrix(ZZ, zeros(ZZ, torsion_free_rank(torusinvariant_weil_divisor_group(cod)), 0))
for i in 1:nrows(images)
v = [images[i,k] for k in 1:ncols(images)]
j = findfirst(x -> x == true, [(v in maximal_cones(cod)[j]) for j in 1:n_maximal_cones(cod)])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -109,10 +109,10 @@ function toric_morphism(domain::NormalToricVarietyType, grid_morphism::FinGenAbG
@req (nrows(matrix(grid_morphism)) > 0 && ncols(matrix(grid_morphism)) > 0) "The mapping matrix must not be empty"

# check for a well-defined map
@req nrows(matrix(grid_morphism)) == rank(character_lattice(domain)) "The number of rows of the mapping matrix must match the rank of the character lattice of the domain toric variety"
@req nrows(matrix(grid_morphism)) == torsion_free_rank(character_lattice(domain)) "The number of rows of the mapping matrix must match the rank of the character lattice of the domain toric variety"

# compute the morphism
@req ncols(matrix(grid_morphism)) == rank(character_lattice(codomain)) "The number of columns of the mapping matrix must match the rank of the character lattice of the codomain toric variety"
@req ncols(matrix(grid_morphism)) == torsion_free_rank(character_lattice(codomain)) "The number of columns of the mapping matrix must match the rank of the character lattice of the codomain toric variety"
if check
codomain_cones = maximal_cones(codomain)
image_cones = [positive_hull(matrix(ZZ, rays(c)) * matrix(grid_morphism)) for c in maximal_cones(domain)]
Expand Down Expand Up @@ -144,7 +144,7 @@ Toric morphism
```
"""
function toric_identity_morphism(variety::NormalToricVarietyType)
r = rank(character_lattice(variety))
r = torsion_free_rank(character_lattice(variety))
identity_matrix = matrix(ZZ, [[if i==j 1 else 0 end for j in 1:r] for i in 1:r])
grid_morphism = hom(character_lattice(variety), character_lattice(variety), identity_matrix)
return ToricMorphism(variety, grid_morphism, variety)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
ps::Vector{Polyhedron{QQFieldElem}}
cis::Vector{Int}
function ToricVanishingSet(toric_variety::NormalToricVarietyType, ps::Vector{Polyhedron{QQFieldElem}}, cis::Vector{Int})
if !all(p -> ambient_dim(p) == rank(picard_group(toric_variety)), ps)
if !all(p -> ambient_dim(p) == torsion_free_rank(picard_group(toric_variety)), ps)
throw(ArgumentError("The ambient dimensions of the polyhedra must match the rank as the picard group of the toric variety"))
end
if !all(i -> 0 <= i <= dim(toric_variety), cis)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ function command_string(v::NormalToricVarietyType, c::Vector{ZZRingElem})
# Join and return
return join(string_list, ";")
end
command_string(v::NormalToricVarietyType) = command_string(v, [ZZRingElem(0) for i in 1:rank(picard_group(v))])
command_string(v::NormalToricVarietyType) = command_string(v, [ZZRingElem(0) for i in 1:torsion_free_rank(picard_group(v))])



Expand Down
3 changes: 1 addition & 2 deletions src/Modules/ModulesGraded.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3077,8 +3077,7 @@ end
function _regularity_bound(M::SubquoModule)
@assert is_graded(M) "module must be graded"
S = base_ring(M)
G = grading_group(S)
@assert is_free(G) && isone(rank(G)) "base ring must be ZZ-graded"
@assert is_z_graded(S) "base ring must be ZZ-graded"
@assert all(x->degree(Int, x; check=false) >= 0, gens(S)) "base ring variables must be non-negatively graded"
res = free_resolution(M)
result = maximum((x->degree(Int, x; check=false)).(gens(res[0])))
Expand Down
12 changes: 7 additions & 5 deletions src/Rings/mpoly-graded.jl
Original file line number Diff line number Diff line change
Expand Up @@ -231,7 +231,8 @@ is_standard_graded(::MPolyRing) = false
Return `true` if `R` is $\mathbb Z$-graded, `false` otherwise.

!!! note
Writing `G = grading_group(R)`, we say that `R` is $\mathbb Z$-graded if `is_free(G) && ngens(G) == rank(G) == 1` evaluates to `true`.
Writing `G = grading_group(R)`, we say that `R` is $\mathbb Z$-graded if
`G` is free abelian of rank `1`, and `ngens(G) == 1`.

# Examples
```jldoctest
Expand All @@ -245,7 +246,7 @@ true
function is_z_graded(R::MPolyDecRing)
is_graded(R) || return false
A = grading_group(R)
return ngens(A) == 1 && rank(A) == 1 && is_free(A)
return ngens(A) == 1 && torsion_free_rank(A) == 1 && is_free(A)
end

is_z_graded(::MPolyRing) = false
Expand All @@ -256,7 +257,8 @@ is_z_graded(::MPolyRing) = false
Return `true` if `R` is $\mathbb Z^m$-graded for some $m$, `false` otherwise.

!!! note
Writing `G = grading_group(R)`, we say that `R` is $\mathbb Z^m$-graded if `is_free(G) && ngens(G) == rank(G) == m` evaluates to `true`.
Writing `G = grading_group(R)`, we say that `R` is $\mathbb Z^m$-graded
`G` is free abelian of rank `m`, and `ngens(G) == m`.

# Examples
```jldoctest
Expand Down Expand Up @@ -295,7 +297,7 @@ false
function is_zm_graded(R::MPolyDecRing)
is_graded(R) || return false
A = grading_group(R)
return is_free(A) && ngens(A) == rank(A)
return is_free(A) && ngens(A) == torsion_free_rank(A)
end

is_zm_graded(::MPolyRing) = false
Expand Down Expand Up @@ -340,7 +342,7 @@ false
is_graded(R) || return false
G = grading_group(R)
is_free(G) || return false
if ngens(G) == rank(G)
if ngens(G) == torsion_free_rank(G)
W = reduce(vcat, [x.coeff for x = R.d])
if is_positive_grading_matrix(transpose(W))
return true
Expand Down
6 changes: 6 additions & 0 deletions src/imports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -195,4 +195,10 @@ import Hecke:
primitive_element,
QQBar

# temporary workaround, see https://github.com/thofma/Hecke.jl/pull/1224
if !isdefined(Hecke, :torsion_free_rank)
torsion_free_rank(A::FinGenAbGroup) = rank(A)
export torsion_free_rank
end

import cohomCalg_jll
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,10 @@
@test dim(cone(antv)) == 2
@test length(affine_open_covering(antv)) == 1
@test length(gens(toric_ideal(antv))) == 1
@test rank(torusinvariant_weil_divisor_group(antv)) == 2
@test rank(character_lattice(antv)) == 2
@test rank(domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(antv))) == 2
@test rank(codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(antv))) == 2
@test torsion_free_rank(torusinvariant_weil_divisor_group(antv)) == 2
@test torsion_free_rank(character_lattice(antv)) == 2
@test torsion_free_rank(domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(antv))) == 2
@test torsion_free_rank(codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(antv))) == 2
@test elementary_divisors(codomain(map_from_torusinvariant_weil_divisor_group_to_class_group(antv))) == [ 2 ]
@test elementary_divisors(class_group(antv)) == [ 2 ]
@test ngens(cox_ring(antv)) == 2
Expand Down
12 changes: 6 additions & 6 deletions test/AlgebraicGeometry/ToricVarieties/del_pezzo_surfaces.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,8 @@

@testset "Basic attributes of dP1" begin
@test length(torusinvariant_prime_divisors(dP1)) == 4
@test rank(torusinvariant_cartier_divisor_group(dP1)) == 4
@test rank(picard_group(dP1)) == 2
@test torsion_free_rank(torusinvariant_cartier_divisor_group(dP1)) == 4
@test torsion_free_rank(picard_group(dP1)) == 2
@test transpose(matrix(ZZ,rays(dP1))) == matrix(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP1))
@test domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP1)) == character_lattice(dP1)
@test codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP1)) == torusinvariant_weil_divisor_group(dP1)
Expand All @@ -44,8 +44,8 @@

@testset "Basic attributes of dP2" begin
@test length(torusinvariant_prime_divisors(dP2)) == 5
@test rank(torusinvariant_cartier_divisor_group(dP2)) == 5
@test rank(picard_group(dP2)) == 3
@test torsion_free_rank(torusinvariant_cartier_divisor_group(dP2)) == 5
@test torsion_free_rank(picard_group(dP2)) == 3
@test transpose(matrix(ZZ,rays(dP2))) == matrix(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP2))
@test domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP2)) == character_lattice(dP2)
@test codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP2)) == torusinvariant_weil_divisor_group(dP2)
Expand All @@ -65,8 +65,8 @@

@testset "Basic attributes of dP3" begin
@test length(torusinvariant_prime_divisors(dP3)) == 6
@test rank(torusinvariant_cartier_divisor_group(dP3)) == 6
@test rank(picard_group(dP3)) == 4
@test torsion_free_rank(torusinvariant_cartier_divisor_group(dP3)) == 6
@test torsion_free_rank(picard_group(dP3)) == 4
@test transpose(matrix(ZZ,rays(dP3))) == matrix(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP3))
@test domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP3)) == character_lattice(dP3)
@test codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(dP3)) == torusinvariant_weil_divisor_group(dP3)
Expand Down
12 changes: 6 additions & 6 deletions test/AlgebraicGeometry/ToricVarieties/hirzebruch_surfaces.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,17 +34,17 @@
@test betti_number(F5, 4) == 1
@test length(affine_open_covering(F5)) == 4
@test dim(polyhedral_fan(F5)) == 2
@test rank(torusinvariant_weil_divisor_group(F5)) == 4
@test rank(character_lattice(F5)) == 2
@test torsion_free_rank(torusinvariant_weil_divisor_group(F5)) == 4
@test torsion_free_rank(character_lattice(F5)) == 2
@test ngens(cox_ring(F5)) == 4
@test length(stanley_reisner_ideal(F5).gens) == 2
@test length(irrelevant_ideal(F5).gens) == 4
@test dim(nef_cone(F5)) == 2
@test dim(mori_cone(F5)) == 2
@test rank(domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(F5))) == 2
@test rank(codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(F5))) == 4
@test rank(class_group(F5)) == 2
@test rank(codomain(map_from_torusinvariant_weil_divisor_group_to_class_group(F5))) == 2
@test torsion_free_rank(domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(F5))) == 2
@test torsion_free_rank(codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(F5))) == 4
@test torsion_free_rank(class_group(F5)) == 2
@test torsion_free_rank(codomain(map_from_torusinvariant_weil_divisor_group_to_class_group(F5))) == 2
@test transpose(matrix(ZZ,rays(F5))) == matrix(map_from_character_lattice_to_torusinvariant_weil_divisor_group(F5))
@test domain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(F5)) == character_lattice(F5)
@test codomain(map_from_character_lattice_to_torusinvariant_weil_divisor_group(F5)) == torusinvariant_weil_divisor_group(F5)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@
@testset "Basic properties" begin
@test is_complete(ntv) == true
@test is_projective_space(ntv) == false
@test rank(torusinvariant_cartier_divisor_group(ntv)) == 4
@test rank(domain(map_from_torusinvariant_cartier_divisor_group_to_torusinvariant_weil_divisor_group(ntv))) == 4
@test torsion_free_rank(torusinvariant_cartier_divisor_group(ntv)) == 4
@test torsion_free_rank(domain(map_from_torusinvariant_cartier_divisor_group_to_torusinvariant_weil_divisor_group(ntv))) == 4
@test is_complete(ntv2) == true
@test length(ntv3) == 1
@test is_projective_space(ntv3[1]) == true
Expand Down
18 changes: 9 additions & 9 deletions test/AlgebraicGeometry/ToricVarieties/projectivization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
X = projectivization(D0, Da)
@test is_smooth(X) == true
@test (a < 2) == is_fano(X)
@test rank(picard_group(X)) == 2
@test torsion_free_rank(picard_group(X)) == 2
@test integrate(cohomology_class(anticanonical_divisor(X))^dim(X)) == integrate(cohomology_class(anticanonical_divisor(hirzebruch_surface(NormalToricVariety, a)))^2)
end
end
Expand All @@ -24,13 +24,13 @@
D2 = toric_divisor(P2, [0,2,0])
X3_P2 = projectivization(D0, D2)
@testset "Test of some Fano projective bundles of dimension 3 over P2" begin
@test rank(picard_group(X1_P2)) == 2
@test torsion_free_rank(picard_group(X1_P2)) == 2
@test is_fano(X1_P2) == true
@test integrate(cohomology_class(anticanonical_divisor(X1_P2))^dim(X1_P2)) == 54
@test rank(picard_group(X2_P2)) == 2
@test torsion_free_rank(picard_group(X2_P2)) == 2
@test is_fano(X2_P2) == true
@test integrate(cohomology_class(anticanonical_divisor(X2_P2))^dim(X2_P2)) == 56
@test rank(picard_group(X3_P2)) == 2
@test torsion_free_rank(picard_group(X3_P2)) == 2
@test is_fano(X3_P2) == true
@test integrate(cohomology_class(anticanonical_divisor(X3_P2))^dim(X3_P2)) == 62
end
Expand All @@ -43,11 +43,11 @@
l1_F1 = toric_line_bundle(F1, [0,1])
X2_F1 = projectivization(toric_line_bundle(F1, [0,0]), l1_F1)
@testset "Test of some Fano projective bundles of dimension 3 over F1" begin
@test rank(picard_group(X1_F1)) == 3
@test torsion_free_rank(picard_group(X1_F1)) == 3
@test is_fano(X1_F1) == true
@test integrate(cohomology_class(anticanonical_divisor(X1_F1))^dim(X1_F1)) == 48
@test integrate(cohomology_class(l1_F1)^2) == 1
@test rank(picard_group(X2_F1)) == 3
@test torsion_free_rank(picard_group(X2_F1)) == 3
@test is_fano(X2_F1) == true
@test integrate(cohomology_class(anticanonical_divisor(X2_F1))^dim(X2_F1)) == 50
end
Expand All @@ -61,13 +61,13 @@
X2_P1xP1 = projectivization(O10, O10)
X3_P1xP1 = projectivization(O00, O11)
@testset "Test of some Fano projective bundles of dimension 3 over P1 * P1" begin
@test rank(picard_group(X1_P1xP1)) == 3
@test torsion_free_rank(picard_group(X1_P1xP1)) == 3
@test is_fano(X1_P1xP1) == true
@test integrate(cohomology_class(anticanonical_divisor(X1_P1xP1))^dim(X1_P1xP1)) == 44
@test rank(picard_group(X2_P1xP1)) == 3
@test torsion_free_rank(picard_group(X2_P1xP1)) == 3
@test is_fano(X2_P1xP1) == true
@test integrate(cohomology_class(anticanonical_divisor(X2_P1xP1))^dim(X2_P1xP1)) == 48
@test rank(picard_group(X3_P1xP1)) == 3
@test torsion_free_rank(picard_group(X3_P1xP1)) == 3
@test is_fano(X3_P1xP1) == true
@test integrate(cohomology_class(anticanonical_divisor(X3_P1xP1))^dim(X3_P1xP1)) == 52
end
Expand Down
4 changes: 2 additions & 2 deletions test/AlgebraicGeometry/ToricVarieties/toric_blowdowns.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@
bl = blow_up(P2, [1, 1])

@testset "Basic tests for simple toric blowdown" begin
@test rank(domain(grid_morphism(bl))) == 2
@test rank(codomain(grid_morphism(bl))) == 2
@test torsion_free_rank(domain(grid_morphism(bl))) == 2
@test torsion_free_rank(codomain(grid_morphism(bl))) == 2
@test matrix(morphism_on_torusinvariant_weil_divisor_group(bl)) == matrix(ZZ, [1 0 0; 0 1 0; 0 0 1; 1 1 0])
@test matrix(morphism_on_torusinvariant_cartier_divisor_group(bl)) == matrix(morphism_on_torusinvariant_weil_divisor_group(bl))
end
Expand Down
2 changes: 1 addition & 1 deletion test/AlgebraicGeometry/ToricVarieties/toric_blowups.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
@test betti_number(BP2, 3) == 0
@test betti_number(BP2, 4) == 1
@test euler_characteristic(BP2) == 4
@test rank(picard_group(BP2)) == 2
@test torsion_free_rank(picard_group(BP2)) == 2
end

@testset "Trigger issue of PR3006" begin
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
end

@testset "Basic attributes" begin
@test rank(parent(divisor_class(DC2))) == 2
@test torsion_free_rank(parent(divisor_class(DC2))) == 2
@test dim(toric_variety(DC2)) == 2
end

Expand Down
Loading
Loading