The equation for Katz's back-off model is:
$ P_{bo}(w_i \mid w_{i-n+1} \cdots w_{i-1})= \begin{cases} d_{w_{i-n+1} \cdots w_i} \cfrac{C(w_{i-n+1} \cdots w_{i-1}w_i)}{C(w_{i-n+1} \cdots w_{i-1})}, \text{ if } C(w_{i-n+1} \cdots w_i)>k \ \alpha_{w_{i-n+1} \cdots w_{i-1}}P_{bo}(w_i \mid w_{i-n+2} \cdots w_{i-1}), \text{ otherwise} \end{cases} $
where:
parametrs:
-
$k=0$ -
$\alpha_{w_{i-n+1} \cdots w_{i-1}}=\cfrac{\beta_{w_{i-n+1} \cdots w_{i-1}}}{\displaystyle\sum_{{w_i:C(w_{i-n+1} \cdots w_i)\le k }} P_{bo}(w_i \mid w_{i-n+2} \cdots w_{i-1})}$
where$\beta_{w_{i-n+1} \cdots w_{i-1}} = 1 - \displaystyle\sum_{{w_i:C(w_{i-n+1} \cdots w_i) > k }}d_{w_{i-n+1} \cdots w_i} \cfrac{C(w_{i-n+1} \cdots w_{i-1}w_i)}{C(w_{i-n+1} \cdots w_{i-1})}$ -
$d_{w_{i-n+1} \cdots w_i}=\cfrac{C^(w_{i-n+1} \cdots w_i)}{C(w_{i-n+1} \cdots w_i)}$
$C^(x)=(C(x)+1) \cfrac{N_{C(x)+1}}{N_{C(x)}}$
$N_{C(x)}=|{ y \mid C(y)=C(x) }|$
$N_{0}=X-\displaystyle\sum_{C=1}^\infin N_C$