Tetiana Parshakova, Jean-Marc Andreoli and Marc Dymetman. CONLL, Hong Kong. Nov. 2019
Tetiana Parshakova, Jean-Marc Andreoli and Marc Dymetman. Optimization Foundations for Reinforcement Learning Workshop at NeurIPS, Vancouver. Dec. 2019
- Make true data:
- Call
wfsa_n_z.py
to create D,V,T datasets with a particular motif and process - motif PFSA:
python wfsa_n_z.py -prob_0 0.5 -length 30 -motif 1011100111001 -data_target ./data/pfsa_30_1011100111001 -valid 2000 -test 5000 -train 20000
- motif-anti-motif PFSA:
python wfsa_m.py -prob_0 0.5 -length 30 -motif 10001011111000 -second_select_prob 0.1 -second_length 30 -second_prob_0 0.5 -second_anti_motif 10001011111000 -second_selector_bit_remove -data_target ./data/pfsa_30_10001011111000.10001011111000 -valid 2000 -test 5000 -train 20000
- Call
- Train r -> P_\lambda -> distillation (cyclic or no) -> \pi_\theta
- call
cycle_r_plambda_pitheta.py
with needed flags - e.g.,
python -u cycle_r_plambda_pitheta.py --n 30 --ds_size 5000 --motif 4 --feat '1001111' --train 'snis_r' --mtype 'm' --restore yes --distill_size 20000 --cyclic
- or using slurm: call
pa_slurm_cycle_r_lambda_pi
, e.g.sbatch --array=0 pa_slurm_cycle_r_lambda_pi
- call
- Analyze the performace with Jupyter Notebook:
jupyter notebook
or remotelyjupyter notebook --ip='0.0.0.0' --no-browser --port 8889
plot_conll_f12.ipynb.ipynb
- Make true data:
- Call
wfsa_n_z.py
to create D,V,T datasets with a particular motif and process - motif:
python wfsa_n_z.py -prob_0 0.5 -length 30 -motif 1011100111001 -data_target ./data/pfsa_30_1011100111001 -valid 2000 -test 5000 -train 20000
- Call
- Train r -> P_\lambda -> Distillation/D-PG/PG/AC D-PG -> \pi_\theta
- connect to wandb optionally
wandb login ...
- call
tuned_slurm_pg_r_plambda_pi
e.g.sbatch --array=0 tuned_slurm_pg_r_plambda_pi
- it executes
r_plambda_pitheta_full.py
with particular flags
- connect to wandb optionally
- Analyze the performace with Jupyter Notebook:
jupyter notebook --ip='0.0.0.0' --no-browser --port 8889
dpg_distill_plot_bounds.ipynb