Skip to content

Code for my Master's thesis "Exploiting Spatial-Temporal Relationships for Occlusion-Robust 3D Human Pose Estimation" at TUM

Notifications You must be signed in to change notification settings

patriciagschossmann/ma-code

Repository files navigation

Exploiting Spatial-Temporal Relationships for Occlusion-Robust 3D Human Pose Estimation

Find the complete thesis here.

Dependencies

  • Cuda 11.6
  • Python 3.10.4
  • Pytorch 1.12.1

Dataset setup

Please download the dataset from Human3.6M website and refer to VideoPose3D to set up the Human3.6M dataset ('./dataset' directory). Or you can download the processed data from here.

${POSE_ROOT}/
|-- dataset
|   |-- h36m
|   |   |-- data_3d_h36m.npz
|   |   |-- data_2d_h36m_gt.npz
|   |   |-- data_2d_h36m_cpn_ft_h36m_dbb.npz

Test the models

To test on pretrained models on Human3.6M:

Baseline:

python main.py --test --reload --refine_reload --refine --spatial_module --frames 81 --previous_dir checkpoint/baseline/1024_2239_22_81

Data-driven Approach (Occlusion Augmentation):

python main.py --test --reload --refine_reload --refine --spatial_module --frames 81 --previous_dir checkpoint/occlusion-augmentation/consecutive/1208_1312_58_81 

Model-driven Approach (Noise Prediction):

python main.py --test --reload --refine_reload --refine --spatial_module --frames 81 --previous_dir checkpoint/visibility/noextra/1125_1855_35_81 --use_visibility --error_thr 0.2  

Train the models

To train on Human3.6M:

Pre-Training modified GraFormer (single-frame 3D HPE):

python pretrain_graformer.py

Baseline:

Transfer Learning (Phase 1):

python main.py --frames 81 --spatial_module --pretrained_spatial_module_init --pretrained_spatial_module_dir [your pre-trained modified GraFormer directory path] --pretrained_spatial_module [your pre-trained modified GraFormer file name inside directory] 

Fine-Tuning (Phase 2):

python main.py --frames 81 --spatial_module --reload --spatial_module_lr 1e-3 --previous_dir [your phase-1 model saved directory path]

Pose Refinement (Phase 3):

python main.py --frames 81 --spatial_module --reload --spatial_module_lr 1e-3 --refine --lr_refine 1e-3 --previous_dir [your phase-2 model saved directory path]

Data-driven Approach (Occlusion Augmentation):

Transfer Learning (Phase 1):

python main.py --frames 81 --spatial_module --occlusion_augmentation_train --num_occluded_j 1 --consecutive_frames --subset_size 6 --pretrained_spatial_module_init --pretrained_spatial_module_dir [your pre-trained modified GraFormer directory path] --pretrained_spatial_module [your pre-trained modified GraFormer file name inside directory] 

Fine-Tuning (Phase 2):

python main.py --frames 81 --spatial_module --occlusion_augmentation_train --num_occluded_j 1 --consecutive_frames --subset_size 6 --reload --spatial_module_lr 1e-3 --previous_dir [your phase-1 model saved directory path]

Pose Refinement (Phase 3):

python main.py --frames 81 --spatial_module --reload --occlusion_augmentation_train --num_occluded_j 1 --consecutive_frames --subset_size 6 --spatial_module_lr 1e-3 --refine --lr_refine 1e-3 --previous_dir [your phase-2 model saved directory path]

Pre-Training Auxiliary Model (single-frame 3D HPE + Noise Prediction):

python pretrain_auxiliary_vis.py --self_supervision --lin_layers --error_thr 0.2 --lr 1e-6 --lr_vis 1e-3 --pose_weight_factor 10 --pretrained_graformer_init --pretrained_graformer [your pre-trained modified GraFormer /path/to/file]

Model-driven Approach (Noise Prediction):

Transfer Learning (Phase 1):

python main.py --frames 81 --spatial_module --use_visibility --pose_weight_factor 10 --error_thr 0.2 --pretrained_spatial_module_init --pretrained_spatial_module_dir [your pre-trained auxiliary model directory path] --pretrained_spatial_module [your pre-trained auxiliary model file name inside directory] 

Fine-Tuning (Phase 2):

python main.py --frames 81 --spatial_module --use_visibility --pose_weight_factor 10 --error_thr 0.2 --reload --spatial_module_lr 1e-3 --previous_dir [your phase-1 model saved directory path]

Pose Refinement (Phase 3):

python main.py --frames 81 --spatial_module --use_visibility --pose_weight_factor 10 --error_thr 0.2 --reload --spatial_module_lr 1e-3 --refine --lr_refine 1e-3 --previous_dir [your phase-2 model saved directory path]

Occlusion Robustness Analysis - Missing Keypoints

To test a model's robustness against missing keypoints (occluding a specific joint [0-16] across 30 frames):

cd scripts/occlusion_robustness_analysis
python joint_importance_analysis.py --frames --spatial_module --previous_dir ../../checkpoint/PATH/TO/MODEL_DIR --root_path ../../dataset

Acknowledgement

The code is built on top of StridedTransformer.

About

Code for my Master's thesis "Exploiting Spatial-Temporal Relationships for Occlusion-Robust 3D Human Pose Estimation" at TUM

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages