AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, and matplotlib, and distributed under the BSD license. It contains a growing library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets.
This project was started in 2012 by Jake VanderPlas to accompany the book Statistics, Data Mining, and Machine Learning in Astronomy by Zeljko Ivezic, Andrew Connolly, Jacob VanderPlas, and Alex Gray.
- HTML documentation: https://www.astroML.org
- Core source-code repository: https://github.com/astroML/astroML
- Figure source-code repository: https://github.com/astroML/astroML-figures
- Issue Tracker: https://github.com/astroML/astroML/issues
- Mailing List: https://groups.google.com/forum/#!forum/astroml-general
This package uses distutils, which is the default way of installing python modules. Before installation, make sure your system meets the prerequisites listed in Dependencies, listed below.
To install the core astroML
package in your home directory, use:
pip install astroML
A conda package for astroML is also available either on the conda-forge or on the astropy conda channels:
conda install -c astropy astroML
The core package is pure python, so installation should be straightforward on most systems. To install from source, use:
python setup.py install
You can specify an arbitrary directory for installation using:
python setup.py install --prefix='/some/path'
To install system-wide on Linux/Unix systems:
python setup.py build sudo python setup.py install
There are two levels of dependencies in astroML. Core dependencies are
required for the core astroML
package. Optional dependencies are required
to run some (but not all) of the example scripts. Individual example scripts
will list their optional dependencies at the top of the file.
The core astroML
package requires the following (some of the
functionality might work with older versions):
- Python version 3.5+
- Numpy >= 1.8
- Scipy >= 0.11
- Scikit-learn >= 0.18
- Matplotlib >= 2.1.1
- AstroPy >= 1.2
Several of the example scripts require specialized or upgraded packages. These requirements are listed at the top of the particular scripts
- HEALPy provides an interface to the HEALPix pixelization scheme, as well as fast spherical harmonic transforms.
This package is designed to be a repository for well-written astronomy code, and submissions of new routines are encouraged. After installing the version-control system Git, you can check out the latest sources from GitHub using:
git clone git://github.com/astroML/astroML.git
or if you have write privileges:
git clone git@github.com:astroML/astroML.git
We strongly encourage contributions of useful astronomy-related code: for astroML to be a relevant tool for the python/astronomy community, it will need to grow with the field of research. There are a few guidelines for contribution:
Any contribution should be done through the github pull request system (for
more information, see the
help page
Code submitted to astroML
should conform to a BSD-style license,
and follow the PEP8 style guide.
All submitted code should be documented following the Numpy Documentation Guide. This is a unified documentation style used by many packages in the scipy universe.
In addition, it is highly recommended to create example scripts that show the
usefulness of the method on an astronomical dataset (preferably making use
of the loaders in astroML.datasets
). These example scripts are in the
examples
subdirectory of the main source repository.
- Jake Vanderplas https://github.com/jakevdp http://jakevdp.github.com
- Brigitta Sipocz https://github.com/bsipocz
- Morgan Fouesneau https://github.com/mfouesneau
- Julian Taylor http://github.com/juliantaylor