PRED-LD: A tool for GWAS summary statistics Imputation, using precalculated LD statistics
Web tool available at : https://compgen.dib.uth.gr/PRED_LD/ or 195.251.108.198:3839/PRED_LD
The following table lists the populations included in the HapMap project, along with their symbols:
Population | Symbol |
---|---|
Yoruba in Ibadan, Nigeria | YRI |
Han Chinese in Beijing, China | CHB |
Japanese in Tokyo, Japan | JPT |
CEPH/Utah Collection (NIGMS Human Genetic Cell Repository) | CEU |
Maasai in Kinyawa, Kenya | MKK |
Luhya in Webuye, Kenya | LWK |
Chinese in Metropolitan Denver, CO, USA | CHD |
Gujarati Indians in Houston, TX, USA | GIH |
Toscani in Italia | TSI |
Mexican Ancestry in LA, CA, USA | MXL |
African Ancestry in SW USA | ASW |
The following table outlines the population symbols as recognized by Pheno Scanner and TOP-LD:
Population | Symbol |
---|---|
Americans (Only in Pheno Scanner) | AMR |
South Asians | SAS |
East Asians | EAS |
Europeans | EUR |
Africans | AFR |
PRED-LD is written in Python (ver. 3.8.2)
- Clone or download PRED-LD from: https://github.com/pbagos/PRED-LD
git clone https://github.com/pbagos/PRED-LD
-
After downloading the .zip folder of PRED-LD from GitHub, extract it to a working directory.
-
Το install the requirements, pip needs to be installed. Download the script for pip, from: https://bootstrap.pypa.io/get-pip.py.
-
Open a terminal/command prompt, cd to the folder containing the get-pip.py file and run:
python get-pip.py
-
To install the mentioned requirements with pip, open a terminal/command prompt and run:
pip install -r requirements.txt
PRED-LD accepts the following command-line arguments:
- --file-path: The path to the input file containing SNP data. The file should be in tab-separated format (TSV,TXT)
- --r2threshold: A float value specifying the R2 threshold for LD filtering
- --pop: A string indicating the population code to use for LD calculations (EUR, EAS, SAS, AFR, AMR, YRI etc.), depending on the LD reference resource (--ref argument)
- --maf: A float value indicating the minor allele frequency (MAF) threshold
- --ref: A string indicating the LD Reference files (Pheno_Scanner, TOP_LD, Hap_Map, all_panels)
- --imp_list: A filename (.txt) to define specific rsIDs to impute (each SNP has a new line, no header)
Your input data should be in a tab-separated text file (TXT format). Ensure the file contains the necessary SNP information and adheres to the specified format:
snp | chr | pos | A1 | A2 | beta | SE |
---|---|---|---|---|---|---|
rs743749 | 22 | 37398195 | A | G | -0.6387442 | 9.898344223 |
rs9306493 | 22 | 45682425 | A | G | -0.15022874 | 9.594216875 |
rs739043 | 22 | 37645230 | G | A | -0.05243055 | 9.788226204 |
rs242885 | 22 | 34423169 | A | G | -0.019996628 | 9.449498344 |
rs5765043 | 22 | 45231883 | G | A | -0.07225636 | 9.599864029 |
rs9625200 | 22 | 27700318 | A | G | 0.07320953 | 9.914661823 |
rs17807317 | 22 | 17680519 | C | A | 0.5180513 | 9.805693943 |
Notes:
- A1: Represents the Alternative allele (ALT).
- A2: Represents the Reference allele (REF).
To run PRED-LD, navigate to the directory containing the script and execute it with the required arguments. Make sure you have unzipped in the same working directory the ref folder. Demo LD ref folder (Download before running PRED-LD)
Here is an example command:
python pred_ld.py --file-path /path/to/your/data.txt --r2threshold 0.8 --pop EUR --maf 0.01 --ref TOP_LD
python pred_ld.py --file-path PRED_LD_demo.txt --r2threshold 0.8 --pop EUR --maf 0.01 --ref TOP_LD
python pred_ld.py --file-path PRED_LD_demo.txt --r2threshold 0.8 --pop EUR --maf 0.01 --ref TOP_LD --imp_list missing_snps.txt
python pred_ld.py --file-path PRED_LD_demo.txt --r2threshold 0.8 --pop EUR --maf 0.01 --ref all_panels