Import this project as a maven project in your preferred IDE
- Intellij - https://www.lagomframework.com/documentation/1.6.x/java/IntellijMaven.html
- Eclipse - https://vaadin.com/learn/tutorials/import-maven-project-eclipse
experiments
- All the code for the experiments ran. XOR, Sin and Letter recognitionexperiments.utils
- Utility methods which are used in evaluating the experimentsmlp
- All the code for Multi layer perceptron implementationmlp.activations
- All the activation functions which can be used - RELU, Leaky RELU, Sigmoid, Linear, Tanh, Softmaxmlp.exceptions
- Custom exceptions for this projectmlp.loss_functions
- All the loss function which can be used - Squared loss, Cross entropy, Binary cross entropy
Sample Training and testing Example
int ni = ...
int nh = ...
int no = ...
int randomState = ...
double learningRate = ...
int epochs = ...
ActivationType type = ...
boolean isClassification = ...
boolean isMulticlass = ...
int batchSize = ...
//Create an multi layer perceptron object
MultilayerPerceptron mlp = new MultilayerPerceptron(ni, nh, no, randomState, learningRate, epochs, type,
isClassification, isMulticlass, bathcSize);
//Training the MLP
mlp.fit(input, output);
//Get the predictions of the MLP
double predicted[][] = mlp.predict(input);