Skip to content

Commit

Permalink
Added maxOS Intel-specific reference files for do_multimfit_tests.sh
Browse files Browse the repository at this point in the history
  • Loading branch information
perwin committed Jun 24, 2024
1 parent b7e093a commit 5d12896
Show file tree
Hide file tree
Showing 3 changed files with 261 additions and 0 deletions.
65 changes: 65 additions & 0 deletions tests/multimfit_reference/macos_x86_64/multimfit_textout1b
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
configuration file = tests/multimfit_reference/config_imfit_smalldataimages.dat
Image-description params from image-info file "tests/multimfit_reference/imageinfo_multimfit0.txt": 1.0 0.0 1.0 2.0 2.0
Reading data image ("tests/multimfit_reference/smallDataImage1a.fits") ...
naxis1 [# pixels/row] = 2, naxis2 [# pixels/col] = 2; nPixels_tot = 4
* No noise image supplied ... will generate noise image from input data image.
Function: FlatSky
Reading data image ("tests/multimfit_reference/smallDataImage1b.fits") ...
naxis1 [# pixels/row] = 2, naxis2 [# pixels/col] = 2; nPixels_tot = 4
* No noise image supplied ... will generate noise image from input data image.
Function: FlatSky
main: theMultImageModel has 2 data images (ModelObject instances)
ModelObjectMultImage: 8 total data values
ModelObject 1: Model Object: 4 data values (pixels)
ModelObject 2: Model Object: 4 data values (pixels)
Function: FlatSky
(global) parameterList: 1.00 1.00 1.00
8 total parameters in ModelObjectMultImage
ModelObjectMultImage: 8 total data values
ModelObject 1: Model Object: 4 data values (pixels)
ModelObject 2: Model Object: 4 data values (pixels)
ModelObject: mask vector applied to weight vector. (4 valid pixels remain)
ModelObject: mask vector applied to weight vector. (4 valid pixels remain)
Setting up parameter information vector ...
3 free parameters (5 degrees of freedom)
Estimated memory use: 640 bytes (0.6 KB)

Performing fit by minimizing chi^2:
Calling Levenberg-Marquardt solver ...
mpfit iteration 1: fit statistic = 1.985294

*** mpfit status = 1 -- SUCCESS: Convergence in fit-statistic value.
CHI-SQUARE = 1.985294 (5 DOF)
INITIAL CHI^2 = 6.750000
NPAR = 8
NFREE = 3
NPEGGED = 0
NITER = 2
NFEV = 9

Reduced Chi^2 = 0.397059
AIC = 13.985294, BIC = 8.223619

# Main model parameters (for reference image = image 1 (tests/multimfit_reference/smallDataImage1a.fits))
X0 1.0000 # +/- 0.0000
Y0 1.0000 # +/- 0.0000
FUNCTION FlatSky
I_sky 0.470588 # +/- 0.24254 counts/pixel

# Image-description parameters for image 2 (tests/multimfit_reference/smallDataImage1b.fits)
PIXEL_SCALE 1 # +/- 0
ROTATION 0 # +/- 0
FLUX_SCALE 1 # +/- 0
X0 2 # +/- 0
Y0 2 # +/- 0


Saving summary of fit in bestfit_parameters_multimfit_summary.dat...
Saving single-image best-fit parameter files (root name = "bestfit_parameters_multimfit"):
Saving bestfit_parameters_multimfit_refimage.dat (for reference image)...
Saving bestfit_parameters_multimfit_image2.dat...
Saving best-fit image-info file "bestfit_parameters_multimfit_imageinfo.dat"...

(Elapsed time: 0.002439 sec for fit, 0.004770 sec total)
Done!

85 changes: 85 additions & 0 deletions tests/multimfit_reference/macos_x86_64/multimfit_textout3f
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
* Using Poisson maximum-likelihood-ratio statistic instead of chi^2 for minimization!
configuration file = tests/multimfit_reference/config_imfit_smallgauss.dat
Image-description params from image-info file "tests/multimfit_reference/imageinfo_multimfit3_noerror.txt": 1.0 0.0 1.0 2.0 2.0
Reading data image ("tests/multimfit_reference/smallgauss_5x5_0.fits") ...
naxis1 [# pixels/row] = 5, naxis2 [# pixels/col] = 5; nPixels_tot = 25
Function: Gaussian
Reading data image ("tests/multimfit_reference/smallgauss_5x5_1.fits") ...
naxis1 [# pixels/row] = 5, naxis2 [# pixels/col] = 5; nPixels_tot = 25
Function: Gaussian
main: theMultImageModel has 2 data images (ModelObject instances)
ModelObjectMultImage: 50 total data values
ModelObject 1: Model Object: 25 data values (pixels)
ModelObject 2: Model Object: 25 data values (pixels)
Function: Gaussian
(global) parameterList: 2.00 2.00 0.00 0.10 900.00 1.50
11 total parameters in ModelObjectMultImage
ModelObjectMultImage: 50 total data values
ModelObject 1: Model Object: 25 data values (pixels)
ModelObject 2: Model Object: 25 data values (pixels)
ModelObject: mask vector applied to weight vector. (25 valid pixels remain)
ModelObject: mask vector applied to weight vector. (25 valid pixels remain)
Setting up parameter information vector ...
8 free parameters (42 degrees of freedom)
Estimated memory use: 6400 bytes (6.2 KB)

Performing fit by minimizing Poisson MLR statistic:
Calling Levenberg-Marquardt solver ...
mpfit iteration 1: fit statistic = 1901.411151
mpfit iteration 2: fit statistic = 1584.362903
mpfit iteration 3: fit statistic = 1532.430502
mpfit iteration 4: fit statistic = 1513.149986
mpfit iteration 5: fit statistic = 1506.845544
mpfit iteration 6: fit statistic = 1494.343953
mpfit iteration 7: fit statistic = 1469.583601
mpfit iteration 8: fit statistic = 1421.045750
mpfit iteration 9: fit statistic = 1326.072522
mpfit iteration 10: fit statistic = 1145.170035
mpfit iteration 11: fit statistic = 802.455813
mpfit iteration 12: fit statistic = 309.014601
mpfit iteration 13: fit statistic = 153.226167
mpfit iteration 14: fit statistic = 95.624468
mpfit iteration 15: fit statistic = 40.036770
mpfit iteration 16: fit statistic = 36.307797
mpfit iteration 17: fit statistic = 36.293184
mpfit iteration 18: fit statistic = 36.293171
mpfit iteration 19: fit statistic = 36.293171

*** mpfit status = 1 -- SUCCESS: Convergence in fit-statistic value.
POISSON-MLR STATISTIC = 36.293171 (42 DOF)
INITIAL POISSON-MLR STATISTIC = 5805.518354
NPAR = 11
NFREE = 8
NPEGGED = 0
NITER = 20
NFEV = 172

Reduced Chi^2 equivalent = 0.864123
AIC = 55.805366, BIC = 67.589355

# Main model parameters (for reference image = image 1 (tests/multimfit_reference/smallgauss_5x5_0.fits))
X0 2.5074 # +/- 0.0162
Y0 2.5387 # +/- 0.0209
FUNCTION Gaussian
PA 18.9275 # +/- 1.6147 deg (CCW from +y axis)
ell 0.293349 # +/- 0.014349
I_0 995.157 # +/- 20.42 counts/pixel
sigma 0.992435 # +/- 0.014688 pixels

# Image-description parameters for image 2 (tests/multimfit_reference/smallgauss_5x5_1.fits)
PIXEL_SCALE 1 # +/- 0
ROTATION 0 # +/- 0
FLUX_SCALE 1 # +/- 0
X0 2.49087 # +/- 0.01617
Y0 2.47574 # +/- 0.021056


Saving summary of fit in bestfit_parameters_multimfit_summary.dat...
Saving single-image best-fit parameter files (root name = "bestfit_parameters_multimfit"):
Saving bestfit_parameters_multimfit_refimage.dat (for reference image)...
Saving bestfit_parameters_multimfit_image2.dat...
Saving best-fit image-info file "bestfit_parameters_multimfit_imageinfo.dat"...

(Elapsed time: 0.068822 sec for fit, 0.071215 sec total)
Done!

111 changes: 111 additions & 0 deletions tests/multimfit_reference/macos_x86_64/multimfit_textout3g
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
* Using Poisson maximum-likelihood-ratio statistic instead of chi^2 for minimization!
configuration file = tests/multimfit_reference/config_imfit_smallgauss.dat
number of bootstrap iterations = 5
bootstrap best-fit parameters to be saved in temptest/temp_multimfit_bootstrap_output.dat
RNG seed = 10
Image-description params from image-info file "tests/multimfit_reference/imageinfo_multimfit3d.txt": 1.0 0.0 1.0 2.0 2.0
Reading data image ("tests/multimfit_reference/smallgauss_5x5_0.fits") ...
naxis1 [# pixels/row] = 5, naxis2 [# pixels/col] = 5; nPixels_tot = 25
Function: Gaussian
Reading data image ("tests/multimfit_reference/smallgauss_5x5_1.fits") ...
naxis1 [# pixels/row] = 5, naxis2 [# pixels/col] = 5; nPixels_tot = 25
Function: Gaussian
main: theMultImageModel has 2 data images (ModelObject instances)
ModelObjectMultImage: 50 total data values
ModelObject 1: Model Object: 25 data values (pixels)
ModelObject 2: Model Object: 25 data values (pixels)
Function: Gaussian
(global) parameterList: 2.00 2.00 0.00 0.10 900.00 1.50
11 total parameters in ModelObjectMultImage
ModelObjectMultImage: 50 total data values
ModelObject 1: Model Object: 25 data values (pixels)
ModelObject 2: Model Object: 25 data values (pixels)
ModelObject: mask vector applied to weight vector. (25 valid pixels remain)
ModelObject: mask vector applied to weight vector. (25 valid pixels remain)
Setting up parameter information vector ...
8 free parameters (42 degrees of freedom)
Estimated memory use: 6400 bytes (6.2 KB)

Performing fit by minimizing Poisson MLR statistic:
Calling Levenberg-Marquardt solver ...
mpfit iteration 1: fit statistic = 1901.411151
mpfit iteration 2: fit statistic = 1584.362903
mpfit iteration 3: fit statistic = 1532.430502
mpfit iteration 4: fit statistic = 1513.149986
mpfit iteration 5: fit statistic = 1506.845544
mpfit iteration 6: fit statistic = 1494.343953
mpfit iteration 7: fit statistic = 1469.583601
mpfit iteration 8: fit statistic = 1421.045750
mpfit iteration 9: fit statistic = 1326.072522
mpfit iteration 10: fit statistic = 1145.170035
mpfit iteration 11: fit statistic = 802.455813
mpfit iteration 12: fit statistic = 309.014601
mpfit iteration 13: fit statistic = 153.226167
mpfit iteration 14: fit statistic = 95.624468
mpfit iteration 15: fit statistic = 40.036770
mpfit iteration 16: fit statistic = 36.307797
mpfit iteration 17: fit statistic = 36.293184
mpfit iteration 18: fit statistic = 36.293171
mpfit iteration 19: fit statistic = 36.293171

*** mpfit status = 1 -- SUCCESS: Convergence in fit-statistic value.
POISSON-MLR STATISTIC = 36.293171 (42 DOF)
INITIAL POISSON-MLR STATISTIC = 5805.518354
NPAR = 11
NFREE = 8
NPEGGED = 0
NITER = 20
NFEV = 172

Reduced Chi^2 equivalent = 0.864123
AIC = 55.805366, BIC = 67.589355

# Main model parameters (for reference image = image 1 (tests/multimfit_reference/smallgauss_5x5_0.fits))
X0 2.5074 # +/- 0.0162
Y0 2.5387 # +/- 0.0209
FUNCTION Gaussian
PA 18.9275 # +/- 1.6147 deg (CCW from +y axis)
ell 0.293349 # +/- 0.014349
I_0 995.157 # +/- 20.42 counts/pixel
sigma 0.992435 # +/- 0.014688 pixels

# Image-description parameters for image 2 (tests/multimfit_reference/smallgauss_5x5_1.fits)
PIXEL_SCALE 1 # +/- 0
ROTATION 0 # +/- 0
FLUX_SCALE 1 # +/- 0
X0 2.49087 # +/- 0.01617
Y0 2.47574 # +/- 0.021056


Saving summary of fit in bestfit_parameters_multimfit_summary.dat...
Saving single-image best-fit parameter files (root name = "bestfit_parameters_multimfit"):
Saving bestfit_parameters_multimfit_refimage.dat (for reference image)...
Saving bestfit_parameters_multimfit_image2.dat...
Saving best-fit image-info file "bestfit_parameters_multimfit_imageinfo.dat"...

Now doing bootstrap resampling (5 iterations) to estimate errors...
Starting bootstrap iterations (L-M solver):
[================> ] 1 (20.0%)[================================> ] 2 (40.0%)[================================================> ] 3 (60.0%)[================================================================> ] 4 (80.0%)[================================================================================] 5 (100.0%)

Statistics for parameter values from bootstrap resampling (5 successful iterations):
Best-fit Bootstrap [68% conf.int., half-width]; (mean +/- standard deviation)
# Image-description parameters for image 2:
PIXEL_SCALE = 1 [fixed parameter]
ROTATION = 0 [fixed parameter]
FLUX_SCALE = 1 [fixed parameter]
X0 = 2.49087 +0.0129221, -0.00286677 [2.488 -- 2.50379, 0.00789442]; (2.49726 +/- 0.00790079)
Y0 = 2.47574 +0.0366922, -0.0215646 [2.45417 -- 2.51243, 0.0291284]; (2.47399 +/- 0.0228414)
# Model parameters:
Y0 = 2.47574 +0.0366922, -0.0215646 [2.45417 -- 2.51243, 0.0291284]; (2.47399 +/- 0.0228414)
X0 = 2.50736 +0.0177573, -0.0246261 [2.48273 -- 2.52512, 0.0211917]; (2.50171 +/- 0.0152172)
Y0 = 2.53867 +0.0272355, -0.00953278 [2.52914 -- 2.56591, 0.0183841]; (2.55398 +/- 0.0149579)
PA = 18.9275 +1.47082, -3.1609 [15.7666 -- 20.3983, 2.31586]; (18.0292 +/- 1.91501)
ell = 0.293349 +-0.0109035, -0.0177403 [0.275608 -- 0.282445, 0.00341842]; (0.279485 +/- 0.00285833)
I_0 = 995.157 +42.3583, --3.8385 [998.995 -- 1037.52, 19.2599]; (1014.03 +/- 15.3642)
sigma = 0.992435 +-0.000478602, -0.0229735 [0.969461 -- 0.991956, 0.0112474]; (0.980082 +/- 0.00824588)

Bootstrap-resampling output saved to file "temptest/temp_multimfit_bootstrap_output.dat".

(Elapsed time: 0.069361 sec for fit, 0.084757 for bootstrap, 0.157225 sec total)
Done!

Expand Down

0 comments on commit 5d12896

Please sign in to comment.