Skip to content

pkiraly/europeana-qa-spark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

europeana-qa-spark

Spark interface

According to my measurements running the same code in Spark is 3-4 times faster than running it on Hadoop. For running it on Spark, you should install Hadoop, Scala and finally Spark. The JSON files are stored in Hadoop Distributed File System at /europeana directory. In my case Hadoop's core-site.xml has fs.default.name property value: hdfs://localhost:54310, so I Spark access the files as hdfs://localhost:54310/europeana/*.json. The result will go to HDFS's /result directory. If that directory exists Spark (such as Hadoop) stops, so you should remove it first. The run on all Europeana records takes roughly two hours, so it is worth to run it at background and with nohup.

Running

nohup ./run-full.sh v2020-07 > logs/run-full-v2020-07.log &

Completeness

step 1. extract features from the Europeana JSON dump (~6:40 hours)

./run-all-proxy-based-completeness [output CSV] [--skipEnrichments] [--extendedFieldExtraction]

e.g.

nohup ./run-all-proxy-based-completeness v2018-08-completeness.csv "" --extendedFieldExtraction \
  > run-all-proxy-based-completeness.log &

step 2. convert CSV to Parquet file (~40+ mins)

./proxy-based-completeness-to-parquet.sh [csv file]

step 3. analyse completeness (~9 hours)

./proxy-based-completeness-all [parquet file] --keep-dirs

e.g.

nohup ./proxy-based-completeness-all.sh v2018-08-completeness2.parquet keep_dirs \
  > proxy-based-completeness-all.log &

It will produce three files:

  • [project]/output/completeness.csv
  • [project]/output/completeness-histogram.csv
  • [project]/output/completeness-histogram-raw.csv

step 4. split result, store in final place (~18 mins)

cd ../scripts
./split-completeness.sh $VERSION

multilinguality

step 1. extract features from the Europeana JSON dump (~7 hours)

./run-all-multilingual-saturation [output CSV] "" --extendedFieldExtraction

e.g.

nohup ./run-all-multilingual-saturation v2018-08-multilingual-saturation.csv "" --extendedFieldExtraction \
  > multilingual-saturation.log &

step 2. convert CSV to Parquet file (~40+ mins)

./multilinguality-to-parquet.sh [csv file]

step 3. analyse multilinguality (~9 hours)

./multilinguality-all.sh [parquet file] --keep-dirs

e.g.

nohup ./multilinguality-all.sh ../v2018-08-multilingual-saturation.parquet --keep-dirs \
  > multilinguality-all.log &

step 4. split result, store in final place (~18 mins)

cd ../script
./split-multilinguality.sh

Record patterns

Uniqueness

About

Spark interface of the Europeana metadata quality measurment API

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published