Skip to content

Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

License

Notifications You must be signed in to change notification settings

posgraph/coupe.StyleCariGAN

 
 

Repository files navigation

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation

License CC BY_NC

This repository contains the official PyTorch implementation of the following paper:

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation
Wonjong Jang, Gwangjin Ju, Yucheol Jung, Jiaolong Yang, Xin Tong, Seungyong Lee, SIGGRAPH 2021

Requirements

  • PyTorch 1.3.1
  • torchvision 0.4.2
  • CUDA 10.1/10.2
  • dlib 19.22.0
  • requests 2.23.0
  • tqdm 4.46.2

If you are using Anaconda environment and get errors regarding compiler version mismatch, check issue #1.

Usage

First download pre-trained model weights:

bash ./download.sh

Train

python -m torch.distributed.launch --nproc_per_node=N_GPU train.py --name EXPERIMENT_NAME --freeze_D

Test

Test on user's input images:

python test.py --ckpt CHECKPOINT_PATH --input_dir INPUT_IMAGE_PATH --output_dir OUTPUT_CARICATURE_PATH --invert_images

We provide some sample images. Test on sample images:

python test.py --ckpt CHECKPOINT_PATH --input_dir examples/samples --output_dir examples/results --invert_images

It inverts latent codes from input photos and generates caricatures from latent codes.

Input image Output caricature
img1 cari1
img2 cari2
img3 cari3

Citation

If you find this code useful, please consider citing:

@article{Jang2021StyleCari,
  author    = {Wonjong Jang and Gwangjin Ju and Yucheol Jung and Jiaolong Yang and Xin Tong and Seungyong Lee},
  title     = {StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation},
  booktitle = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH)},
  publisher = {ACM},
  volume = {40},
  number = {4},
  year = {2021}
}

Contact

You can have contact with wonjong@postech.ac.kr or ycjung@postech.ac.kr

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms requrie a licens from the Pohang University of Science and Technology.

Acknowledgements

Specially thanks to CJWBW who makes our project run on website.

About

Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.6%
  • Cuda 11.0%
  • C++ 1.3%
  • Shell 0.1%