Skip to content

Commit

Permalink
✨ Add EDM plugin (#9)
Browse files Browse the repository at this point in the history
  • Loading branch information
francois-rozet authored Aug 26, 2024
1 parent 83c77d3 commit 7e361d0
Show file tree
Hide file tree
Showing 7 changed files with 164 additions and 32 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ from azula.plugins import adm
from azula.sample import DDIMSampler

# Download weights from openai/guided-diffusion
denoiser = adm.load_model("imagenet_256x256_uncond")
denoiser = adm.load_model("imagenet_256x256")

# Generate a batch of 4 images
sampler = DDIMSampler(denoiser, steps=64).cuda()
Expand Down
35 changes: 13 additions & 22 deletions azula/plugins/adm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,11 +8,13 @@
git clone https://github.com/openai/guided-diffusion
and add it to your Python path.
and add it to your Python path before importing the plugin.
.. code-block:: python
import sys; sys.path.append("path/to/guided-diffusion")
...
from azula.plugins import adm
References:
| Diffusion Models Beat GANs on Image Synthesis (Dhariwal et al., 2021)
Expand All @@ -24,7 +26,6 @@
"ImprovedDenoiser",
"list_models",
"load_model",
"make_model",
]

import numpy as np
Expand Down Expand Up @@ -163,7 +164,7 @@ def list_models() -> List[str]:
return database.keys()


def load_model(key: str, **kwargs) -> ImprovedDenoiser:
def load_model(key: str, **kwargs) -> GaussianDenoiser:
r"""Loads a pre-trained ADM model.
Arguments:
Expand Down Expand Up @@ -193,31 +194,21 @@ def make_model(
# Schedule
schedule_name: str = "linear",
timesteps: int = 1000,
# Data
image_channels: int = 3,
image_size: int = 64,
# Backbone
attention_resolutions: Set[int] = {32, 16, 8}, # noqa: B006
channel_mult: Sequence[int] = (1, 2, 3, 4),
dropout: float = 0.0,
image_size: int = 64,
num_channels: int = 128,
num_classes: int = None,
num_heads: int = 1,
num_head_channels: int = 64,
num_res_blocks: int = 3,
**kwargs,
) -> ImprovedDenoiser:
r"""Builds an ADM model.
Arguments:
learned_var: Whether the variance term is learned or not.
schedule_name: The beta schedule name.
timesteps: The number of schedule time steps.
The remaining arguments are for the :class:`guided_diffusion.unet.UNetModel`
backbone.
Returns:
A denoiser.
"""
) -> GaussianDenoiser:
r"""Instantiates an ADM denoiser."""

kwargs.setdefault("resblock_updown", True)
kwargs.setdefault("use_fp16", False)
Expand All @@ -229,8 +220,8 @@ def make_model(
backbone = FlattenWrapper(
wrappee=unet.UNetModel(
image_size=image_size,
in_channels=3,
out_channels=6 if learned_var else 3,
in_channels=image_channels,
out_channels=2 * image_channels if learned_var else image_channels,
model_channels=num_channels,
channel_mult=channel_mult,
num_classes=num_classes,
Expand All @@ -241,12 +232,12 @@ def make_model(
dropout=dropout,
**kwargs,
),
shape=(3, image_size, image_size),
shape=(image_channels, image_size, image_size),
)

schedule = BetaSchedule(name=schedule_name, steps=timesteps)

return ImprovedDenoiser(backbone=backbone, schedule=schedule)
return ImprovedDenoiser(backbone, schedule)


# fmt: off
Expand Down
24 changes: 17 additions & 7 deletions azula/plugins/adm/database.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,15 @@ def keys() -> List[str]:


URLS = {
"imagenet_64x64": "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt",
"imagenet_256x256": "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt",
"imagenet_256x256_uncond": "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt",
"imagenet_64x64_cond": "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt",
"imagenet_256x256": "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt",
"imagenet_256x256_cond": "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt",
"imagenet_512x512_cond": "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/512x512_diffusion.pt",
"ffhq_256x256": "https://drive.google.com/uc?id=1BGwhRWUoguF-D8wlZ65tf227gp3cDUDh",
}

CONFIGS = {
"imagenet_64x64": {
"imagenet_64x64_cond": {
"schedule_name": "cosine",
"attention_resolutions": {32, 16, 8},
"channel_mult": (1, 2, 3, 4),
Expand All @@ -44,16 +45,25 @@ def keys() -> List[str]:
"channel_mult": (1, 1, 2, 2, 4, 4),
"image_size": 256,
"num_channels": 256,
"num_classes": 1000,
"num_classes": None,
"num_head_channels": 64,
"num_res_blocks": 2,
},
"imagenet_256x256_uncond": {
"imagenet_256x256_cond": {
"attention_resolutions": {32, 16, 8},
"channel_mult": (1, 1, 2, 2, 4, 4),
"image_size": 256,
"num_channels": 256,
"num_classes": None,
"num_classes": 1000,
"num_head_channels": 64,
"num_res_blocks": 2,
},
"imagenet_512x512_cond": {
"attention_resolutions": {32, 16, 8},
"channel_mult": (0.5, 1, 1, 2, 2, 4, 4),
"image_size": 256,
"num_channels": 256,
"num_classes": 1000,
"num_head_channels": 64,
"num_res_blocks": 2,
},
Expand Down
103 changes: 103 additions & 0 deletions azula/plugins/edm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
r"""Elucidated diffusion model (EDM) plugin.
This plugin depends on the `dnnlib`, `torch_utils` and `training` modules in the
`NVlabs/edm <https://github.com/NVlabs/edm>`_ repository. To use it, clone the
repository to you machine
.. code-block:: console
git clone https://github.com/NVlabs/edm
and add it to your Python path before importing the plugin.
.. code-block:: python
import sys; sys.path.append("path/to/edm")
...
from azula.plugins import edm
References:
| Elucidating the Design Space of Diffusion-Based Generative Models (Karras et al., 2022)
| https://arxiv.org/abs/2206.00364
"""

__all__ = [
"ElucidatedDenoiser",
"list_models",
"load_model",
]

import pickle
import re
import torch.nn as nn

from azula.denoise import Gaussian, GaussianDenoiser
from azula.hub import download
from azula.nn.utils import FlattenWrapper
from azula.noise import VESchedule
from torch import Tensor
from typing import List, Optional

# isort: split
from . import database


class ElucidatedDenoiser(GaussianDenoiser):
r"""Creates an elucidated denoiser.
Arguments:
backbone: A noise conditional network.
schedule: A variance exploding (VE) schedule.
"""

def __init__(self, backbone: nn.Module, schedule: Optional[VESchedule] = None):
super().__init__()

self.backbone = backbone

if schedule is None:
self.schedule = VESchedule()
else:
self.schedule = schedule

def forward(self, x_t: Tensor, t: Tensor, **kwargs) -> Gaussian:
_, sigma_t = self.schedule(t) # alpha_t = 1

mean = self.backbone(x_t, sigma_t.squeeze(-1), **kwargs)
var = sigma_t**2 / (1 + sigma_t**2)

return Gaussian(mean=mean, var=var)


def list_models() -> List[str]:
r"""Returns the list of available pre-trained models."""

return database.keys()


def load_model(key: str) -> GaussianDenoiser:
r"""Loads a pre-trained EDM model.
Arguments:
key: The pre-trained model key.
Returns:
A pre-trained denoiser.
"""

url = database.get(key)
filename = download(url)

with open(filename, "rb") as f:
model = pickle.load(f)["ema"]
model.eval()

image_size = re.search(r"(\d+)x(\d+)", key).groups()
image_size = map(int, image_size)

return ElucidatedDenoiser(
backbone=FlattenWrapper(
wrappee=model,
shape=(3, *image_size),
),
)
28 changes: 28 additions & 0 deletions azula/plugins/edm/database.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
r"""Pre-trained models database."""

from typing import List


def get(key: str) -> str:
r"""Returns the URL of a pre-trained model.
Arguments:
key: The pre-trained model key.
"""

return URLS[key]


def keys() -> List[str]:
r"""Returns the list of available pre-trained models."""

return list(URLS.keys())


URLS = {
"cifar10_32x32": "https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-ve.pkl",
"cifar10_32x32_cond": "https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-cond-ve.pkl",
"afhq_64x64": "https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-afhqv2-64x64-uncond-ve.pkl",
"ffhq_64x64": "https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-ffhq-64x64-uncond-ve.pkl",
"imagenet_64x64_cond": "https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-imagenet-64x64-cond-adm.pkl",
}
2 changes: 1 addition & 1 deletion docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ Alternatively, Azula's plugin interface allows to load pre-trained models and us
from azula.sample import DDIMSampler
# Download weights from openai/guided-diffusion
denoiser = adm.load_model("imagenet_256x256_uncond")
denoiser = adm.load_model("imagenet_256x256")
# Generate a batch of 4 images
sampler = DDIMSampler(denoiser, steps=64).cuda()
Expand Down
2 changes: 1 addition & 1 deletion docs/tutorials/guidance.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@
}
],
"source": [
"denoiser = adm.load_model(\"imagenet_256x256_uncond\").to(device)"
"denoiser = adm.load_model(\"imagenet_256x256\").to(device)"
]
},
{
Expand Down

0 comments on commit 7e361d0

Please sign in to comment.